

まとめ
 ● 実験炉、原型炉設計において、ダイバータ設計の成立性は、 炉の成立性そのものを左右する。
 ● 信頼性の高い、境界層プラズマシミュレーションコードの開発が 強く望まれる。
●信頼性の高いシミュレーションコード開発にとって、原子・分子 データ及びその評価が不可欠。
(ex. ITER設計におけるB2-EIRINEによるモデリング)
 単にデータの提供だけではなく、コード開発への原子・分子 エキスパートの参加が必要。
 ダイバータシミュレーションモデル/コード開発では、 プラズマ、原子分子、壁相互作用、など幅広い分野の 垣根を越えた協力、連携が不可欠!