電子ビームイオントラップによる 鉄・タングステン多価イオンの分光計測

中村信行(電気通信大学レーザー新世代研究センター) 2008/12/18 原子分子データ応用フォーラムセミナー@NIFS

電子ビームイオントラップ **Electron Beam Ion Trap (EBIT)** あらゆる多価イオンに関する広範なデータ - 遷移波長、エネルギー準位 - 遷移確率 (遷移寿命) - 偏光度 - 任意プラズマ中での発光強度 - 電子衝突断面積(励起、電離、再結合、共鳴、など) - 電荷移行断面積 - 固体表面との相互作用における2次粒子収量

Principle of EBIT (EBIS)

- A high density e-beam compressed by strong Bfield ionizes trapped ions successively.
- Axial potential applied to the drift tube and the space charge of the e-beam confine the ions.
- Observation slits at the middle of the drift tube enable spectroscopic studies.
- The trapped ion can be extracted through ecollector as an HCI beam.

EBITの多価イオン光源としての特徴

電子ビーム(単色単向)←プラズマ光源との違い
 ビームエネルギーにより生成価数を制御
 ビーム電流や磁場により電子密度を制御
 エネルギー依存、励起関数、共鳴過程
 非等方性、偏光度
 極細線状光源→スリットレス
 イオントラップ←ビームフォイル分光との違い
 ドップラーシフトフリー

CoBIT (Compact, Corona EBIT)

Specifications

e-beam energy 100 – 2500 eV e-beam current 20 mA (max) Magnetic field 0.2 T (max) Temperature 77 K (High-Tc SCM)

EBIT parameters

Ee: 0.1-200 keV
Ie: 0-300 mA
Ne: 10⁹⁻¹² cm⁻³
Ni: 10⁸⁻¹⁰ cm⁻³
Ti: 100-1000 eV

Electron Beam Ion Trap (EBIT)

- device for producing and trapping highly charged ions -

X線結晶分光器

Polarization measurements

- An EBIT is a useful device to study the anisotropy of the radiation because it has a monoenergetic unidirectional electron beam.
- Observations are usually done at 90° with respect to the e-beam.
 - From the difference between the experimental intensity ratio and the 4π integrated line intensity ratio, the polarization of the line can be deduced.

N.Nakamura et al., PRA 63 (2001) 024501

太陽大気を小型実験装置に再現

EUV spectrometer for CoBIT

任意速度分布プラズマの実験的模擬

Atomic Processes in an EBIT

Resonant processes in e-HCl collisions ~ Dielectronic recombination (DR)~

X-ray observation

Dielectronic recombination

X-ray observation for iron ions

(a)

KLM

B.O'Rourke et al., NIMB 205 (2003) 378

DR Cross Section

Dielectronic recombination X-ray observation for tungsten ions

NIFSニュース178号

Ionization Cross Section Measurements through RR observation -Principle-

Ionization Cross Section Measurements through RR observation -RR spectrum-

Ionization Cross Section Measurements through RR observation -Results-

共同研究者+お世話になっている方々

- 電通大:大谷俊介、山田千樫、渡辺裕文 (中部大)、戸名正英 (神戸大)
 核融合研:加藤隆子、村上泉、加藤太治、坂上裕之
- 国立天文台: 渡邊鉄哉
- 首都大:田沼肇
- 阪大レーザー:西原功修、西村博明、山本則正
- 原研:仲野友英