

プラズマ・核融合学会専門委員会「プラズマ原子分子過程の基礎研究とプラズマ研究の融合と発展」

30分

2008年12月18日

JT-60Uトカマクにおける 主プラズマでのタングステンの蓄積 ダイバータプラズマでの炭素の放射過程 日本原子力研究開発機構 那珂核融合研究所 仲野友英

プラズマ・核融合学会専門委員会「プラズマ原子分子過程の基礎研究とプラズマ研究の融合と発展」

30分

2008年12月18日

Heat and particle flow in a tokamak JT-60U-

<u>Core:</u> *T*∽10 keV *n*∽1x10²⁰m⁻³∧ ∧ ∧ ∧

Heatiles

Issues:

- Control of fuel particles
- Control of impurities
- <u>Mitigation of heat load</u>

 $\Rightarrow \text{Radiative cooling}$

<u>Divertor:</u> <u>T∽0.2*</u>- 100 eV <u>n∽(0.1- 50*)x10¹⁹ m⁻³ Pumping *Recombining plasma</u>

<u>Divertor plates:</u> Heat load => Erosion, impurities

- Control of fuel particles
- Control of impurities
- Mitigation of heat load

onto target plates

 \Rightarrow Radiative cooling

Target plate (Limit 10 MW/m², Plasma wet area 1.7 m²): No radiation 40 MW / 1.7 m² \Rightarrow 24 MW/m² 60% radiation 16 MW / 1.7 m² \Rightarrow 10 MW/m²

Fusion power:

α

500 MM

α

Heating: Z3 MW Heat and particle flow in a tokamak

Heaticet

Present work

- •Radiator? D, C⁰, C⁺ ,,,,?
- Process
 - Ionization(excitation) Recombination
 - Charge eXchange ?
- Ionization/recombination balance

<u>Divertor:</u> <u>T∽0.2*</u>- 100 eV <u>n∽(0.1- 50*)x10¹⁹ m⁻³ Pumping *Recombining plasma</u>

<u>Divertor plates:</u> Heat load => Erosion, impurities

Outline

Introduction

Heat and particle flow in a tokamak JT-60U tokamak

- Diagnostics
 2D visible & VUV spectrometer
- Experiment Discharge
- Analysis
 Collisional-Radiative model (& Atomic data)
- Results

Ionization/Recombination balance ($C^{2+}<=>C^{3+}<=>C^{4+}$) Radiation power (C^{2+} and C^{3+})

Outline

Introduction

Heat and particle flow in a tokamak JT-60U tokamak

- Diagnostics
 2D visible & VUV spectrometer
- Experiment Discharge
- Analysis
 Collisional-Radiative model (& Atomic data)
- Results

Ionization/Recombination balance ($C^{2+}<=>C^{3+}<=>C^{4+}$) Radiation power (C^{2+} and C^{3+})

JT-60U tokamak

- Plasma current:
 - < 2.5 MA

JT-60U-

- Toroidal Magnetic field: < 4.1 T
- Discharge duration:
 < 65 s
- Heating
 (Neutral Beam) < 25 MW
 (Waves) < 8 MW

Outline

Introduction

Heat and particle flow in a tokamak JT-60U tokamak

- Diagnostics
 2D visible & VUV spectrometer
- Experiment Discharge
- Analysis
 Collisional-Radiative model (& Atomic data)
- Results

Ionization/Recombination balance ($C^{2+}<=>C^{3+}<=>C^{4+}$) Radiation power (C^{2+} and C^{3+})

2D visible wide-spectral-band spectrometer

Vacuum Ultra Violet spectrometer

• Similar viewing chord to the visible spectrometer

• Absolute calibration of sensitivity by a branching ratio method

Observed spectra

Outline

Introduction

Heat and particle flow in a tokamak JT-60U tokamak

- Diagnostics
 2D visible & VUV spectrometer
- Experiment Discharge
- Analysis
 Collisional-Radiative model (& Atomic data)
- Results

Ionization/Recombination balance ($C^{2+}<=>C^{3+}<=>C^{4+}$) Radiation power (C^{2+} and C^{3+})

During high radiation: Peak at X point

Volume-averaged population density of C^{3+}

Outline

Introduction

Heat and particle flow in a tokamak JT-60U tokamak

- Diagnostics
 2D visible & VUV spectrometer
- Experiment Discharge
- Analysis
 Collisional-Radiative model (& Atomic data)
- Results

Ionization/Recombination balance ($C^{2+}<=>C^{3+}<=>C^{4+}$) Radiation power (C^{2+} and C^{3+})

Collisional-Radiative model for C IV

$C^{3+}:n \le 4$: Ionizing component (Term Energy < ~50eV) $n \ge 5$: Recombining component

Outline

Introduction

Heat and particle flow in a tokamak JT-60U tokamak

- Diagnostics
 2D visible & VUV spectrometer
- Experiment Discharge
- Analysis
 Collisional-Radiative model (& Atomic data)
- Results

Ionization/Recombination balance ($C^{2+}<=>C^{3+}<=>C^{4+}$) Radiation power (C^{2+} and C^{3+})

Ionization/ Recombination balance between C³⁺ and C⁴⁺

C III (C²⁺): Ionization components dominates

Flux balance : C^{2+} ioniz. >> C^{3+} recomb.

Transport loss of C³⁺ is suggested

Summary

In a cold and dense peripheral plasma (divertor plasma) of the JT-60U tokamak,

- C^{3+} is produced by C^{2+} ionization and C^{4+} recombination
- C^{3+} is lost little by C^{3+} ionization and not by C^{3+} recombination
- \Rightarrow Significant transport loss of C³⁺ from the X-point
- C³⁺ and C²⁺ radiate 60% and 30%, respectively,

of total radiation power

プラズマ・核融合学会専門委員会「プラズマ原子分子過程の基礎研究とプラズマ研究の融合と発展」

30分

2008年12月18日

JT-60Uトカマクにおける • 主プラズマでのタングステンの蓄積 • ダイバータプラズマでの炭素の放射過程

日本原子力研究開発機構 那珂核融合研究所 仲野友英

Tungsten as a PFM

<u>Merit :</u>

high melting point low T retention => Significant merit for DT devices low sputtering yeild large larmor radius => Prompt redeposition

Demerit :

high Z => High radiation efficiency accumulation

=> degrades of core confinement

Experiments in Large tokamaks:

simulation or test of W PFM for future devices.

 High heat and particle load onto the W-tile by Type I ELMs, leading to high W

sputtering.

• Highly ionized tungsten (> W^{50+}) in high temperature plasmas,

W divertor plates in JT-60U

W coated CFC tiles:

50 μ m with Re multi-layer 12 tiles (1/21 toroidal length)

Visible spectroscopy: for WI(Wsource)

Standard configuration

Highly Charged W Spectrum

Calculated W distribution

JT-60U-

Intense brems. Emission from the core

VUV spectrum (5 - 20 nm)

Neutral Beam Injection (NBI) system

More significant W accumulation trend than Ar and Kr

With decreasing Vt,

W accumulation becomes more significant than Ar & Kr. => Significant Z dependence of accumulation

- With increasing toroidal plasma rotation velocity against the plasma current, W accumulation tends to be more significant.
- From the comparison of Ar and Kr reference discharges, Z dependence of impurity accumulation is observed.
- W spectrum analysis by FAC code is in progress.