EUV光源開発における原子過程と放射流体シミュレーションの現状 西原 功修、砂原 敦¹、佐々木 明²、田沼 肇³、小池文博⁴、V. Zhakhovskii 大阪大学レーザーエネルギー学研究センター

¹レーザー技術総合研究所,²日本原子力研究開発機構・量子ビーム応用研究部門, ³首都大学理学研究科,⁴北里大学医学部

introduction

Miniaturization Trend of ULSI Devices and Exposure Wavelength Reduction Trend

Extreme ultra-violet lithography (EUVL) is a leading technology for semiconductor devices at 32 nm node and below.

introduction 2

Sn: Sn^{+8} - Sn^{+14} (4f-4d)Xe: Xe^{+10} (5p-4d)Li: Li^{+1} Ly- α (2p-1s)(many lines 10^5)(more than 100 lines)(narrow bandwidth)transitions are not assigned for Sn and Xe yet(narrow bandwidth)

understanding of atomic processes

Importance of atomic data base

DB 1 Transitions between the same principal quantum number result in strong emission near 13.5 nm even for different charge states.

Energy levels calculated using detail atomic codes such as HULLAC / GRASP agree with those observed except 4d-4f transition with about 0.4 nm difference.

comparison of Sn energy level between theory and experiments

CES: Xe^{+q} + Xe \rightarrow Xe^{+q-1} (*n*, *l*) \rightarrow Xe^{+q-1} (*n'*, *l'*) + h ν

atomic phys. 1

Spectral shift and narrowing occur for ions having 4d-open valence shell, due to configuration interaction.

The Sn UTA is due to $4p^{6}4d^{n} \rightarrow (4p^{5}4d^{n+1} + 4d^{n-1}4f + 4d^{n-1}5p)$ (n=0,1,,,9) transitions.

4f

4f

code 1

Integrated 1d & 2d radiation hydrodynamic codes were developed, which are used for design of a high power EUV source.

Radiation hydrodynamic simulations reproduces well measured spectra at different laser intensities.

code 2

Radiation hydrodynamic simulations represent well the conversion efficiency for different laser and target conditions.

CRE: collisional radiative equilibrium w/PE: with photo-excitation

code 3

In Sn plasma, photo-excitation process by EUV absorption is important.

CO₂ laser 2

spectral efficiency (%) (13.5 nm with 2 % band width to total radiation)

dependence of EUV spectra on laser wavelength and pulse duration

 CO_2 : 2x10¹⁰ W/cm², 40 ns or 90 ns

after Shimada

double pulse 2

CE of > 4% is obtained from 36 μ m^{ϕ} pure Sn droplet in two-color lasers, double pulse irradiation scheme.

executive summary 2 ダブルパルス(メインレーザー: CO₂)・スズドロプレット による高変換効率 EUV量産光源 のパラメータ

EUVA 計画	量産光源 2010 年	<u> </u>
EUV パワー (中間集光点)	110 W ¹⁾ / 140 W ²⁾	(理論的予測:5-7%)
レーザー	CO ₂ : 10 kW	
繰り返し	100 kHz	
変換効率 (光源)	4 %	注) 光源から中間集光点までの透過率
ターゲット	スズ液滴	1) 28% スペクトル純化フィルタあり
安定性	3 σ < +/- 0.3 %	2) 36% スペクトル純化フィルタなし
LP成果に基づく指針	推奨パラメータ メインパルス	推奨パラメータ プレパルス
レーザー	CO ₂	Nd:YAG
レーザー レーザーエネルギー	CO ₂ 100 mJ / pulse	Nd:YAG 3 mJ / pulse
レーザー レーザーエネルギー パルス幅	CO ₂ 100 mJ / pulse 20 ns	Nd:YAG 3 mJ / pulse 10 ns
レーザー レーザーエネルギー パルス幅 レーザー強度	CO ₂ 100 mJ / pulse 20 ns 7x10 ⁹ W/cm ²	Nd:YAG 3 mJ / pulse 10 ns 4x10 ¹¹ W/cm ²
レーザー レーザーエネルギー パルス幅 レーザー強度 レーザースポット直径	CO ₂ 100 mJ / pulse 20 ns 7x10 ⁹ W/cm ² 300 μm ^φ	Nd:YAG 3 mJ / pulse 10 ns 4x10 ¹¹ W/cm ² 10 μm ^φ

optimization 1

EUV power of 500 – 1000 W can be obtained with CO₂ laser < 15 kW at optimized conditions (power balance model*)

Atoms, clusters and solid states are coexisting and expands after prepulse (MD simulation)

debris 2

原子・分子物理, プラズマ物理, 気体物理, 液体物理, 固体物理 <

目的: LPP-EUV光源の物理を解明し、実用化への指針を与える (光源の要求用件: 光源の出力 115W (2%BW)など)

「原子分子データ協会」の課題

多様なニーズへの対応が可能か?
 開発のフェーズによって、ニーズや企業からの機密要望が異なってくる

PDP: 実用化され、コスト削減、効率向上などの競争が激しい

EUV: 実用化が見込まれるが、最終的な仕様が未確定

?:新しいニーズを掘り起こす可能性がある

ニーズをはっきりさせる

- 課題ごとに、必要な研究者を集めることが出来るか?
 (離合集散)
- ・ 適切なPI (Principal Investigator) を設定し、分担を明確に出来るか?

研究者は、基本的には学問的に新しいこと(計測手法を含め)しかやらない!

Interpreter が必要 「 関係者間での問題点などを共有できるか?

中長期的な取り組みを明確に

- ・1-2年以内
- ・ 3-5年

