

原子分子データ応用フォーラム Dec. 17, 2008

半導体装置メーカにおける 原子・分子データの必要性(前半)

㈱アルバック 技術開発部 小方誠司

------ 紹介する内容------I. 半導体プロセスと弱電離プラズマ I. エッチング開発の実際

Ultimate in Vacuum since 1952

WAGENS I-1. 半導体製造装置の市場

WAGens I-2. 半導体製造の工程(1)

WAGener I-3. 半導体製造の工程(2)

Ultimate in Vacuum since 1952

I-4. エッチング(Etching)

光デバイス

ルレンズ

有機Low-k

I-5. エッチング装置

I-6. 装置の外観

エッチング装置

スパッタ装置

I-7. イオン注入装置

具体例:SF₆/0₂プラズマによる、Siエッチング

- (1) Etching形状のSimulation
- (2) 気相反応のSimulation

	目的	反応	入射の方向性
F	Siを削る	化学反応	等方的
		$Si + F \rightarrow SiFx$ (Gas)	
0	保護膜を作り、 Etchingを阻止	化学反応 Si + 0 → SiO2(Solid)	等方的
Ion	保護膜を破壊	高い運動エネルギーに よる、物理的スパッタ	指向性 ULVAC

I-2. 形状Simulation

Ⅱ-3. 計算例

ULVAC

12

Ultimate in Vacuum since 1952 SOLUTIONS II-4 $SF_6 OF(O_2 \# L) \neq III = IIIIIIIIII$

Ultimate in Vacuum since 1952

VLVACION I-5. Fluxの変化 (F=1.0E22/こ固定)

Ultimate in Vacuum since 1952

ULVAC, Inc.

15

SF6プラズマの解析例

II-8. Flux $F^+(Ion)$

Ultimate in Vacuum since 1952 Solutions M-9. Flux Ratio of O(atom)/F(atom)

17

Flux ratio of O/F

-												TEL 10
Electro	on Co	llision (I	onizat	ion)					_			T.E.[eV]
е	+	SF6	\rightarrow	2e	+	SF5+	+	F	0	Rejoub 2001		16.0
						SF4+	+	2F ?		"		18.7
						SF3+	+	3F ?	Δ	"		20.1
е	+	SF5	\rightarrow	2e	+	SF5+			0	Tarnovsky 1998		11.2
						SF4+	+	F	0	"		14.5
е	+	SF4	\rightarrow	2e	+	SF4+			0	"	(Theo.)	12.0
е	+	SF3	\rightarrow	2e	+	SF3+			0	"		11.0
е	+	SF2	\rightarrow	2e	+	SF2+			0	"	(Theo.)	12.8
е	+	F	\rightarrow	2e	+	F+			\triangle	NIFS		17.4
Electro	on Co	llision (D	Dissoc	iation)								
е	+	SF6	\rightarrow	е	+	SF3	+	3F ?	\triangle	Iio 1995		16.0
						SF2	+	4F ?	\bigtriangleup	"		17.0
Electro	on Att	tachmen	ıt									
е	+	SF6	\rightarrow	SF6-					0	Christophorou 2000		
				SF5-	+	F			0	"		
				SF5	+	F-			×	"		
Detacl	hment	and CI	D									
е	+	F-	\rightarrow	2e	+	F			0	NIFS		3.9
SF6	+	F-	\rightarrow	SF6	+	е	+	F	0	Wang 1989	RCIC 変換	
		SF6-	\rightarrow	SF6	+	SF5	+	F-	O	"	RCに変換	
		SF5-	\rightarrow	SF6	+	SF4	+	F-	O	"	RCIC 変換	
Recom	nbinat	ion										
F	+	SF5	\rightarrow	SF6						Herron 1987	RC	
		SF4	\rightarrow	SF5						"	RC	
		SF3	\rightarrow	SF4						未調査		
		SF2	\rightarrow	SF3						未調査		
Bohm	Curre	nt at th	e She	ath (Red	combi	nation or	n the	Wall)				
е	+	SF5+	\rightarrow	SF5								
		SF4+	\rightarrow	SF4								
		SF3+	\rightarrow	SF3								
		F+	\rightarrow	F								
										◎ > 1E-1	6	
										0 > 1 = 1	7	

 $\Delta > 1E-17$ $\Delta > 1E-18$

19

Solutiens Ⅱ-11.考慮したO2関係の反応

【酸素プラズマで仮定する反応モデル】

7

8

9

10

0

0+

0-

03

13.614

PKAG	1						出典			ファイル名
46	е	O2(X)	\rightarrow	е	O2(X,v')					
47	е	O2(X)	\rightarrow	е	O2(a)		電気		CS	02-a
48	е	O2(X)	\rightarrow	e	O2(b)		電気		CS	O2-b
49	е	O2(a)	\rightarrow	e	O2(b)		データ不詳			
50	е	O2(X)	\rightarrow	2e	02+		Straub 1996	i	CS	O2-Ion
51	е	O2+	\rightarrow	0	0		PKAG	P141	2.7e-7*(300	/Te)^0.7
52	е	O2(X)	\rightarrow	0-	0		LB	5-82	CS	02-0-
53	е	O2(a)	\rightarrow	0-	0		データ不詳			
54	O2(a)	O-	\rightarrow	е	03		PKAG	P182-R37	3.00E-10	
55	е	O2(X)	\rightarrow	е	0	0	LB	6-152	CS	O2-cAA
56	е	O2(a)		е	0	0	データ不詳			
57	е	03		e	02	0	取寄せ中	02-の自動	電離	
58	02 + 0 +	M		O3 + M			三体衝突	Ę		
59	03	0*	\rightarrow	O2(X)	O2(X)		PKAG	P161-R7,21	RC	
60	03	0	\rightarrow	O2(X)	O2(a)		PKAG	P160-R8	1.0e-11*exp	o(-2300/T)
61	03	O2(a)	\rightarrow	O2(X)	O2(X)	0	PKAG	P160-R6	5.2e-11*exp	o(-2840/T)
62	03	O2(b)	\rightarrow	O2(X)	O2(X)	0	PKAG	P160-R14	2.20E-11	
63	2O2(a) + (2O2(a) + O2		203			三体衝突			
Add-1	е	0	\rightarrow	2e	O+		Laher 1990	1	CS	O-Ion
Add-2	е	O2(X)	\rightarrow	2e	0+	0	Straub 1996	1	CS	O2-IonO+
Add-3	е	03	\rightarrow	0-	02		LB	5-104	CS	03-0-
Add-4	e	03	\rightarrow	0	02-		LB	5-104	CS	03-02-
1			Dia				雷车	雷复带合性	法起生	
	e		DIS.					电丸子云汉	1·II ¥ C 古	anharia Casaa
2	02(1)	0.077	5.116				PRAG	Landalt D	tics in Atomo	spheric Gases
3	02(a)	1.627					LB	Landolt-Bor	nstein	
4	02(0)	12.027								
5	02+	12.07								
0	UZ-									

- 1. エッチング(微細加工)は
 - (1) 中性活性種による化学反応

(2) イオンによる物理的スパッタ

- 2. Fluxの量では、イオン < 中性活性種
- 3. Plasmaとは言っても、中性活性種を忘れてはいけない!

```
企業では・・・

        (1) Te、Neの測定すら余裕が無い
        (2) 中性活性種の測定は困難

⇒ 次に、SEAJでの取組みを紹介します
```