環境汚染化学物質の放電分解における 原子・分子データ

佐藤孝紀(室蘭工業大学)

1. 背景とアプローチ

2. 環境汚染化学物質の放電分解における原子・分子データ

2.1 大気圧コロナ放電によるアセトン分解と分解過程の解明にお ける原子・分子データの利用

2.2 ベンゼン、トルエン、キシレン分解過程の解明における原子・分子データの必要性

3. まとめ

Background

化学物質の排出量 (平成18年度 PRTR: Pollutant Release and Transfer Register))

◆固定排出源・・・24.5万トン 大気中:21.7万トン(88%) 公共用水域:1.1万トン(4%)

◆届出外排出源···31.5万トン
移動体(36%),非対象業種(31%),
対象業種(17%),家庭(16%)

大気汚染防止法の改正

(環境省、「大気汚染防止法の一部を改正する法律の施行について」(2005))

ほぼ全てのVOC(メタノール、アセトンを含む)が規制対象 2010年度までに2000年度比で30%削減 総量規制(低濃度でも対策が必要)

Background

排ガス中の有害物質(VOC)の処理法(分解・除去)

直接燃烧法、触媒燃烧法、吸着法:

大流量の排ガス処理が可能(1,000Nm³以上) 100ppm~10,000ppmの濃度範囲

放電プラズマによる処理:

低流量の排ガス処理(~10,000Nm³以下) 数ppm~数1,000ppmの濃度範囲 ベンゼン環のように安定な化学物質も分解可能

微量でも有害な物質の処理に適用できる

Goal & Approach

Goal・・・有害化学物質を、効果的に、安全な物質に分解する。

- ・fragments と by-products の詳細な把握(安全性、回収と再利用)
- ・分解に関わる粒子(電子、イオン、ラジカル)と 分解過程の解明

Muroran Institute of Technology

VOCs decomposed by discharge plasma

物質名	分子式	濃度[ppm]	除去率[%]	物質名	分子式	濃度[ppm]	除去率[%]
עצע	CH₄	113~1,000	15~90	キシレン(o-,m-,p-)	C ₆ H ₅ (CH ₃) ₂	2~200	100
メチルアルコール	сн₃он	400	95	エチルベンゼン	C ₆ H ₅ C ₂ H ₅	0.2	100
ホルムアルデヒド	нсно	40~100	97	スチレン	C ₆ H ₅ C ₂ H ₃	1,000~5,370	>90
エタン	C ₂ H ₆	1,000	51	スカトール	CgHgN	2.4	100
エチレン	C₂H₄	1,000	96	四フッ化炭素	CF4	1,000	32
アセトアルデヒド	сн₃сно	5~282	100	ジクロロメタン	CH ₂ Cl ₂	1,000	60~99
アセトン	сн₃сосн₃	100~20,000	99	四塩化炭素	CCI4	200~3,000	60~100
イソプロビルアルコール	C₃H7OH	100~1,000	99	臭化メチル	CH ₃ Br	1,000	100
酢酸メチル	сн₃соосн₃	1,000	$50 \sim 95$	ジクロロジフルオロメタン	CCl ₂ F ₂	1,000	90
ブタン	C₄H10	1,000	58~90	バーフロロエタン	C ₂ F ₆	1,750~3,000	66
メチルエチルケトン	CH₃OC₂H₅	113	85	1,2-ジクロロエタン	C2H4Cl2	1,000	99
酢酸エチル	CH₃COOC₂H₅	1,000	50~80	トリクロロエタン	C ₂ H ₃ Cl ₃	450~1,000	90
酢酸ブチル	CH₃COOC₄H൭	1,000	70	トリクロロエチレン	C ₂ HCl ₃	50~23,000	90~100
ヘキサン	C ₆ H ₁₄	113	55	テトラクロロエチレン	C ₂ Cl ₄	100~1,000	99
シクロヘキサン	C6H12	113	65	トリクロロトリフルオロエタン	C2Cl3F3	1,000~10,000	90~100
ヘキセン	C ₆ H ₁₂	113	95	エチレングリコールモノエチルエーテル	C2H5OC2H4OH	50~2,300	100
ペンゼン	C_6H_6	10~650	98~100	三フッ化窒素	NF3	294~2,191	10~92
トルエン	C₅H₅CH₃	60~2,000	36~100	アンモニア	NH3	21~55	95

ジエチルエーテル, テトラヒドロフラン, ヘプタン, クロロホルム, アセトニトリル

環境汚染化学物質の放電分解における 原子・分子データの利用

~大気圧コロナ放電によるアセトン分解と分解過程の解明を例として~

装置の概要

赤外吸収分光分析による分解生成物等の測定

化学反応速度論に基づいた分解過程の検討

Experimental apparatus, conditions & procedure

Discharge chamber

197mm in inner diameter 300mm in heigh stainless steel

Purity

Acetone: 99.5% Nitrogen: 99.99% Oxygen: 99.5% Multi-needle electrode Thirteen needles of ϕ 4 x 45mm stainless steel Needle holder: ϕ 50mm (brass) Needle density : 0.66/cm²

> Gas Cell (Infrared Analysis, 10-PA) Optical path length: 10m

A background gas is nitrogenoxygen mixture and the mixture

is approximately 230 ppm.

ratios (%) are <u>N₂ / O₂ = 80/20, 90</u> /10, 95/5, 98/2 and 99.8/0.2.

The initial concentration of acetone

- Initial gas pressure in the discharge chamber is atmospheric pressure.
- Applied voltage : +25 to 27 kV
- A gas sample is taken from the discharge chamber prior to and following the discharge, and the concentrations of acetone and products in the corona discharge are measured by a FT-IR.

Muroran Institute of Technology

Infrared absorbance spectra after 30min discharge $(N_2/O_2 = 99.8/0.2)$

- Absorbance spectra of acetone decrease after 30min discharge, and those of CO₂, CO, CH₄, HCHO, HCOOH and HCN, regarded as products from acetone, are newly observed.
- Spectra of N₂O, NO₂ and O₃ are also observed, and these are probably produced mainly from the background gas.

Concentration variations of acetone with input energy

- Concentrations decrease to 0ppm at about 40kJ in almost the same manner.
- The oxygen concentration has little influence on the decomposition of acetone.
- Namely, oxygen species make few contributions to the acetone decomposition.

Concentration variations of gaseous products with input energy

Chemical reaction

$$l\mathbf{A} + m\mathbf{B} + n\mathbf{C} \xrightarrow{k} l'\mathbf{A}' + m'\mathbf{B}' + n'\mathbf{C}'$$
$$r = k[\mathbf{A}]^{l}[\mathbf{B}]^{m}[\mathbf{C}]^{n}$$

Reaction rate : r (cm⁻³/s) - rate constant : k (cm³/s or cm⁶/s) concentration: [A], [B], [C] (cm⁻³) order of reaction : *l*, *m*, *n*

The values of reaction rate indicate principal reactions.

Decomposition process of acetone

Acetone decomposition

The decomposition process of acetone has little dependence on the oxygen concentration.

$$CH_3 + e$$

 $CH_3CO + CH_3 + e$

CO production

The concentration of CO increases with the increase of oxygen concentration.

$$CH_2 + O_2$$
 $CO + H_2O$
 $k=4.0 \times 10^{-13} \text{ cm}^{3/s}$

CH₄ production

Muroran Institute of Technology

CO₂ production

Predicted products

環境汚染化学物質の放電分解における 原子・分子データの必要性

VOCに関するデータの現状 ~ Benzene, Toluene & Xylene ~

350 1200 600 concentration [ppm] CO_2 → N;:O,=99.8: 0.2 C₆H₆ 300 CO 435ppm -- ↓ N2:O2=98.0: 2.0 -- N2:O2=95.0: 5.0 -- N2:O2=95.0: 5.0 -- N2:O2=95.0: 2.0 concentration [ppm] 500 concentration [ppm] H- N;:O=99.8:0.2 N:0=98.0:2.0 400 353ppm ▼- N;:0,=95.0:5.0 • N.: O= 80: 20 300 N:Q=99.8: 0.2 200 N:Q=98.0: 2.0 N:Q=95.0: 5.0 200 50 100 ➡ N:Q=80 :20 20 40 60 80 100 120 140 160 80 100 120 140 160 0 20 40 60 0 120 20 40 60 80 100 140 Ō 160 input energy [kJ] input energy [kJ] input energy [kJ] 最終分解生成物 高酸素濃度時に分解効率UP 主な中間生成物 酸素濃度依存性なし 600 **HCN** concentration [ppm] C_2H_2 HCOOH 41ppm concentration [ppm] concentration [ppm] 16ppm H- N;:O,=99.8: 0.2 H- N;:O=99.8: 0.2 → N₂:O₂=99.8: 0.2 → N₂:O₂=98.0: 2.0 ▲ N;:O,=98.0: 2.0 N;:0,=98.0: 2.0 • $N_2:O_2=95.0: 5.0$ • $N_2:O_2=95.0: 5.0$ • $N_2:O_2=80 :20$ ▼- N;:O=95.0: 5.0 30 -▼- Nj:Oj=95.0: 5.0 ➡ N;:O,=80 :20 O N:O =80 :20 20 10 100 80 100 120 20 40 140 160 60 80 100 120 60 80 100 120 140 60 Ō 20 40 140 160 20 40 160 input energy [kJ] input energy [kJ] input energy [kJ] 高酸素濃度時に生成量増加 低酸素濃度時に生成量増加 微量な中間生成物 低酸素濃度時は微量な中間生成物

Concentration variations in N₂-O₂-C₆H₆

Muroran Institute of Technology

Reactions for benzene

Benzene					
Reaction	Т [К]	k(T) [cm ³ /molecule s]	Number		
Benzene + O Products	300	3.16x10 ⁻¹⁴	[1]		
Benzene + O Adduct	300	1.85x10 ⁻¹⁴	[1]		
Benzene + O ₃ Products	298	2.03x10 ⁻²²	[2]		
Benzene + $N_2(A^3\Sigma_u^+)$ Products		1.6x10 ⁻¹⁰	[3]		
Benzene + NO ₂ Phenyl + HNO ₂	600 – 1100	4.15x10 ⁻¹⁰ exp(-177/RT)	[4]		
Benzene + NO ₃ Products	298	3.01x10 ⁻¹⁷	[5]		
Benzene + OH Products	300	1.28x10 ⁻¹²	[6]		
Benzene + OH Adduct	296	1.3x10 ⁻¹²	[7]		
Benzene + OH Phenyl + H ₂ O	300	4.73x10 ⁻¹⁴	[8]		
Benzene + Phenyl Biphenyl + H	300	8.14x10 ⁻¹⁶	[9]		
Benzene + Phenyl Products	298	3.01x10 ⁻¹⁵	[10]		
Reaction	т [К]	k(T) [s ⁻¹]	Number		
Benzene Products	1200 - 1500	8.99x10 ¹⁵ exp(-450/RT)	[6]		
Benzene Phenyl + H	1520 – 2500	4.57x10 ¹³ exp(-372/RT)	[11]		

•Reaction coefficients between electrons & benzene ?

Reactions for toluene

Toluene					
Reaction	T [K]	k(T) [cm ³ /molecule s]	Number		
Toluene + O Products	300	7.91x10 ⁻¹⁴	[1]		
Toluene + O_3 Products	298	4.53x10 ⁻²²	[2]		
Toluene + NO ₂ Products	295	2.09x10 ⁻²⁰	[12]		
Toluene + NO_3 Products	298	6.79x10 ⁻¹⁷	[5]		
Toluene + OH Products	300	6.12x10 ⁻¹²	[13]		
Toluene + OH Adduct	300	6.93x10 ⁻¹²	[6]		
Toluene + OH Benzyl + H_2O	298	6.96x10 ⁻¹²	[14]		
Reaction	T [K]	k(T) [s ⁻¹]	Number		
Toluene Products	1090 - 1190	$1.23 \times 10^{13} \exp(-315/\text{RT})$	[15]		
Toluene Benzyl + H	1000 - 2500	$7.75 \times 10^{14} (T/296)^{0.68} \exp(-373/RT)$	[16]		
Toluene Phenyl + CH ₃	1000 - 2500	$2.24 \times 10^{18} (T/296)^{-1.73} \exp(-436/RT)$	[16]		

•Reaction coefficients between electrons & toluene ?

Reactions for xylene

<i>p</i> -Xylene					
Reaction	T [K]	k(T) [cm ³ /molecule s]	Number		
p-Xylene + O Products	300	2.37x10 ⁻¹³	[17]		
p-Xylene + O ₃ Products	s 300	1.54×10^{-21}	[2]		
p-Xylene + NO ₃ Produc	ets 298	4.53x10 ⁻¹⁶	[5]		
<i>p</i> -Xylene + OH Adduct	300	1.4x10 ⁻¹¹	[6]		
<i>p</i> -Xylene + OH Produc	ts 300	1.52x10 ⁻¹¹	[13]		
Reaction	T [K]	k(T) [s ⁻¹]	Number		
<i>p</i> -Xylene Products	949 - 1030	3.79x10 ⁷ exp(-284/RT)	[20]		
<i>p</i> -Xylene Methylbenzy	l + H 1100 - 1900	1.78x10 ¹⁶ exp(-369/RT)	[19]		
<i>p</i> -Xylene Benzyl + CH	3 1210 - 1380	$9.29 \times 10^{12} \exp(301/\text{RT})$	[21]		

大気圧コロナ放電によるVOC分解のfragments、by-productsを詳細に 測定し、分解プロセスを検討した。

- ◆化学反応速度を指標として、アセトンの分解過程を示すことができた。 測定にかからないby-productsの生成を予測できる。 電子による分解率は未定。
 - (予定) レート方程式解析により、副生成物等の生成量を得る。

◆アセトンの他に、10種類以上のVOCの分解を試み、分解特性を得た。しか し、ほとんどのVOCの分解に関する基礎的データが少なく(反応係数、特に電 子とVOCの反応、電子衝突断面積など)、分解過程の予測が困難である。

(予定)分解実験の結果から、電子-VOC反応係数を求める。

