酸素分子および酸素分子イオンが関係した衝突素過程

田沼 肇 首都大学東京 理工学研究科・物理学専攻

電子状態に関する古典

F. R. Gilmore :

"Potential Energy Curves for N₂, NO, O₂ and corresponding lons"

J. Quant. Spectrosc. Radiat. Transfer. <u>5</u> (1965) 369-390.

P. H. Krupenie :

"The Spectrum of Molecular Oxygen"

J. Phys. Chem. Ref. Data <u>1</u> (1972) 423-534.

垂直イオン化ポテンシャル > 断熱イオン化ポテンシャル = 12.07 eV

cf.

Xe⁺ (²P_{3/2}) : 12.130 eV Xe⁺ (²P_{1/2}) : 13.436 eV

光電子スペクトル

「分子の光電子スペクトルと電子状態」木村克美編 (学会出版センター, 1995)

反応速度定数表

イオン分子反応返 Gas Phase Ion-Molect	B度定数集 ule Reaction Rate Constant	ts Through 1986 定価 15,0
	昭和62年12	月 25 日 発 行
© 1987	著作者 泄	紧。 「膝
	崧	御 伸 善
	武	部 蕥 說
	Alber	rt Viggiano
	発行所 日本	質量分析学会
	1才:	/反応研究部会
	代表	土屋正彦
	〒113 東京都	『 文京区本郷後楽
	2-	-18-10 大東ビル
		· · · · · · · · · · · · · · · · · · ·

Gas Phase Ion-Molecule Reaction Rate Constants

Through 1986

Yasumasa Ikezoe, D. Eng.

Japan Atomic Energy Research Institute Tokai-mura, Ibaraki-ken, 319-11 Japan

Shingo Matsuoka, D. Eng.

Nuclear Engineering Research Laboratory Faculty of Engineering, University of Tokyo Tokai-mura, Ibaraki-ken, 319-11 Japan

Masahiro Takebe, D. Sc.

Faculty of Engineering Tohoku University Aramaki, Sendai, 980 Japan

and

Albert Viggiano, Ph. D.

Air Force Geophysics Laboratory Ionospheric Physics Division Hanscom AFB, MA 01731-5000 U.S.A.

- 「序文」より抜粋 -

1986年秋までに出版された雑誌等を 検索し、さらにイオン反応研究にたず さわってきた内外約50の研究グループ と接触して、得られた約1100文献中 の9300定数をまとめたものである。

Ion Reaction Research Group of The Mass Spectroscopy Society of Japan

$Ar^+ + O_2 \rightarrow ?$

F 「「「」

 $Ar^{+} + O_2 \rightarrow O_2^{+} + Ar$

 $Ar^{+} + O_{2} \rightarrow O_{2}^{+} + Ar$

 $Ar^{+} + O_{2} \rightarrow O_{2}^{+} + Ar$

 $Ar^{+} + O_2 \rightarrow O_2^{+} + Ar$

 $Ar^{+} + O_2 \rightarrow O_2^{+} + Ar$

 $Ar^{+*} + O_2 \rightarrow Ar^{+} + O_2$

 $Ar^{+*} + O_2 \rightarrow O_2^+ + Ar$

 $Ar^{+}(^{2}P_{3/2}, ^{2}P_{1/2}) + o_{2} \rightarrow o_{2}^{+} + Ar$

. + .			* / ~
$Ar' + O_2 -> O_2 + Ar$	5.5 <u>+</u> 0.5 x 10 ⁻¹¹	MS(Ø-084b)	295K; k decreases with T(295-578K)
$\operatorname{Ar}^+ + \operatorname{O}_2 \rightarrow \operatorname{O}_2^+ + \operatorname{Ar}$	6.2 x 10 ⁻¹¹	SFT (Ø-183)	±20%, 29 8K
$\operatorname{Ar}^+ + \operatorname{O}_2 \rightarrow \operatorname{O}_2^+ + \operatorname{Ar}$	5.2 x 10^{-11}	SIFT(2-2001)	±20%
$\operatorname{Ar}^+ + \operatorname{O}_2 \rightarrow \operatorname{O}_2^+ + \operatorname{Ar}$	4.6 x 10^{-11}	FA(2-77)	±258
$\operatorname{Ar}^+ + \operatorname{O}_2 \rightarrow \operatorname{O}_2^+ + \operatorname{Ar}$	$4.3\pm1.0 \times 10^{-11}$	DT (4-Ø34)	$Ar^{+}(^{2}P_{3/2})$
$Ar^{+} + O_2 \rightarrow O_2^{+} + Ar$	6 x 10 ⁻¹¹	DT(4-108)	

速度定数 (cm³/s) 方法 (文献)

4.8 x 10^{-11}

 3.2×10^{-11}

5.7 x 10⁻¹¹

4.3 x 10^{-11}

 3.9×10^{-11}

Ø.Ø4eV KE; k depends on KE(Ø.Ø4-leV)

Ø.Ø4eV KE; Ø.Ø4-2eV KE

コメント

 $\emptyset.07eV$ KE; k depends on KE($\emptyset.07-7eV$)

±20%,	3ØØK	

±308

5.7 x 10^{-11} ICR(Ø-144) ±15% 5.7±1.0 x 10⁻¹¹ $Ar^{+}(^{2}P_{1/2})$ DT(4-034) $2.9\pm0.8 \times 10^{-10}$ $Ar^{+}(^{2}P_{1/2})$ DT(4-034)

DT(4-108)

FDT(4-146)

DT(4-150)

ICR(4-392)

FA(4-422)

SIFT(4-454)

Ar : IP = 15.76 eV → 電荷移行は発熱反応

 $O_2^{+*} + Ar \rightarrow ?$

反応	速度定数 (cm ³ /s)	方法 (文献)	コメント
$O_2^+(a^4 \Pi_u) + Ar -> Ar^+ + O_2$	5.0 x 10 ⁻¹⁰	FDT(2-188)	<u>+</u> 4Ø%
$O_2^{+*} + Ar -> Ar^+ + O_2$	$4\pm 1 \times 10^{-10}$	SIFT(4-Ø1Ø)	$o_2^+(a^4\Pi_u)$

O₂⁺ (a ⁴Π_u) :準安定励起状態 O₂⁺ (X ²Π_g) :電子基底状態

1. 極低温ヘリウム気体中における移動度

基底状態と準安定励起状態の分離

2. 静電型イオン蓄積リングにおける寿命測定

未知の長寿命成分の発見

Drift velocity and Mobility of Ions

N: number density, N_0 : Loschmidt number

ATS of O₂⁺ in He at 4.3 K

Ar gas in the lon Source

ATS of O₂⁺ in He at 4.3 K

- 1.はじめに
- 2.実験方法

 O_2^{+*}

- 3.結果·考察
 - O₂+準安定状態の減衰曲線(6秒間)
 - ・未知の長寿命成分

 - 吸収スペクトル
 - 起源について

中性粒子のモニター → 蓄積イオン量の減衰を追跡可能

➡ 崩壊寿命の測定に最適

課題:複数の状態を同時に含む場合 本研究:レーザー合流による,状態選択的寿命測定法の開発

O₂+準安定状態: a⁴∏_u

Krupenie, J. Phys. Chem. Ref. Data **1**, 423 (1972).

O₂+, a⁴∏_u状態の寿命測定

過去の報告

	[1] O'Keefe & McDonald	[2] Kuo et al.	[3] Marx et al.	[4] Bustamente et al. (YT. Lee group)
装置	FT-ICR	FT-ICR	triple cell FT-ICR	イオントラップ
検出方法	電荷変換反応 (Ar)	電荷変換反応 (CO ₂)	電荷変換反応 (Ar, CO ₂)	光解離
寿命	220 ⁺³⁰ ₋₂₀ ms	101 ⁺⁷ ₋₆ ms	55 ±7 ms	7

[1] O'Keefe & McDonald, Chem. Phys. **103**, 425 (1986).

- [2] Kuo et. al., J. Chem. Phys. **92**, 4849 (1990).
- [3] Marx et. al., Int. J. Mass Spectom. Ion Processes 132, 143 (1994).
- [4] Bustamente et. al., J. Chem. Phys. 86, 508 (1987).

O₂+準安定状態: a⁴∏_u

O₂+準安定状態: a⁴∏_u

Ion Trap Experiment (YT. Lee group)

Bustamente et. al., JCP 86, 508 (1987).

λ/۸

首都大学東京 静電型イオン蓄積リング (TMU E-ring)

OPO波長可変レーザー

- nsパルス, 10 Hz
- 使用波長範囲: 494 680 nm
- レーザー強度:~0.1 mJ
- 分解能:0.2 cm⁻¹
- パワーメータで強度を常時モニター

Multi Channel Scaler

中性粒子収量の蓄積時間依存性

 $O_2^+ + H_2$

 $O_2^{+*} + hv$

neutral products

 O_{2}^{+**}

Laser: OFF

- ・**残留ガス (H₂)** との衝突
- •輻射による解離,電子放出
- 自動解離, 自動電子放出

中性粒子収量の蓄積時間依存性

中性粒子収量の蓄積時間依存性

レーザー波長依存性(~ms)

レーザー波長依存性(6 sec.)

- 長寿命成分の存在
- 寿命: τ~3 秒

波長依存性なし

励起寿命の導出

周回イオンの減衰速度k: $k = k_0 + k_{\rm col}$ 放射寿命などの 残留ガスとの衝突による減衰 脱励起による減衰 $O_2^{+*} + H_2 \rightarrow O_2, O + O^+$ O_2^{+*} $k_{\rm col} = \sigma \rho v$ ∞ リング内部ガス圧 O_2^{+}

リング内部ガス圧依存性

H₂ガスの導入

励起寿命ての決定

レーザー波長依存性(6 sec.)

- 長寿命成分の存在
- 寿命: τ~3秒

波長依存性なし

・強度:<u>波長依存性あり</u>

1秒蓄積後の光解離スペクトル

長寿命成分の起源は何か?

- 1. a⁴Π_u状態の回転基底状態
- 2. X²Π_g状態の高振動励起状態
- 3. その他の電子状態

回転基底状態の寄与?

回転状態の統計分布: ・J=0状態~0.5%(300K) - 実験値:1-7%

$X^2\Pi_g$ の高振動励起状態?

高振動励起状態

16O18O+:非対称→赤外活性

Amitay et al., PRA 1994(計算) → ¹⁶O¹⁸O⁺ (v'>10)の 寿命は3.3秒以下

その他の電子状態:推測

Marian et. al., Mol. Phys. 46, 779 (1982).

• 静電型イオン蓄積リングにおける,

レーザー合流による状態選択的寿命測定法の開発

- O₂+準安定状態. 未知の長寿命成分
 - 寿命決定: τ = 3.8 秒
 - スペクトル測定
 - 起源:⁶∑_u⁺?, ²Φ_u?

