原子分子データ応用フォーラムセミナー@Toki,13 Dec 2011

Numerical thermofluid modeling of high-power high-pressure thermal plasma using reaction kinetics

<u>Yasunori Tanaka</u> Kanazawa University JAPAN

tanaka@ee.t.kanazawa-u.ac.jp http://www.ee.t.kanazawa-u.ac.jp/staffs/tanaka/

Introduction-1 :Features of high-pressure plasmas High-pressure plasmas for materials processing 1. Thermally non-equilibrium plasmas (ex.Atmospheric-pressure glow discharges APGD, DBD) -Te >> Th

-Electron-molecule interactions are dominant to produce ions & radicals.

-Gradients of gas density and gas temperature are low.

APGD

due to high gradient of gas temperature (300 K-10000 K).

Introduction-2	
Modeling of Thermal Plas	mas
The conventional model for thermal plasma assumes LTE (Local Thermodynamic Equ A. Thermal equilibrium # All temperatures including Te, Th, Tex, T are assumed to be the same.	is ilibrium) condition: Trot, Tvib, etc
B. Chemical equilibrium # Infinite reaction rates for all reactions → Reaction field instantaneously reaches → Reaction field is determined only by T	its equilibrium. and <i>P</i> .
Actual situations	
-Very high gas flow velocity	Thermally &
-Rapid change in state (Transient state)	□ Chemically
-Low temp. region Low reaction rate	Non-Equilibrium
-High electric field strength	Conditions
-High gradient of particle density	

How to consider chemically non-equilibrium
A conventional model for thermal plasmas Te~Th
Assumption of local thermodynamic equilibrium (LTE) condition
\rightarrow <u>Particle composition</u> can be determined
only by local temperature and pressure through the mass action law.
-Solving Saha equations & Guldberg-Waage equations
-Minimization of Gibb's free energy of a system
Actual situations
-Reaction rates are finite \rightarrow Time scale of a system~Reaction time
-Convection and diffusion effects are not negligible
for particle composition determination
Mass conservation of each of species j:
$\frac{\partial(\rho Y_j)}{\partial t} + \underline{\nabla \cdot (\rho u Y_j + J_j)} = m_j \sum_{\ell=1}^{L} (\beta_{j\ell}^r - \beta_{j\ell}^f) \left(\alpha_{\ell}^f \prod_{i=1}^{N} \alpha_i^{\beta_{i\ell}^f} - \alpha_{\ell}^r \prod_{i=1}^{N} \alpha_i^{\beta_{i\ell}^r} \right)$
Convection Diffusion Production by reactions
This equation should be solved to determine particle composition
considering chemically non-equilibrium effects.

\langle	<u>Reactions in</u>	<u>dry-air plasmas</u>		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22: $0 + e^{2} \rightarrow 0^{+} + 2e^{2}$ 23: $N + e^{2} \rightarrow N^{+} + 2e^{2}$ 24: $N0^{+} + 0 \rightarrow N^{+} + 0_{2}$ 25: $0_{2}^{+} + N \rightarrow N^{+} + 0_{2}$ 26: $N0 + 0^{+} \rightarrow N^{+} + 0_{2}$ 27: $0_{2}^{+} + N_{2} \rightarrow N_{2}^{+} + 0_{2}$ 28: $0_{2}^{+} + 0 \rightarrow 0^{+} + 0_{2}$ 29: $N0^{+} + N \rightarrow 0^{+} + N_{2}$ 30: $N0^{+} + 0_{2} \rightarrow 0_{2}^{+} + N_{3}$ 31: $N0^{+} + N \rightarrow 0_{2}^{+} + N_{3}$ 32: $0^{+} + N_{2} \rightarrow N_{2}^{+} + 0$ 33: $N0^{+} + N \rightarrow N_{2}^{+} + 0$ 34: $N_{2}^{+} + N \rightarrow N_{2}^{+} + 0$ 35: $N_{2}^{+} + N_{2} + e^{2} \rightarrow N_{2}^{+} + N_{3}$ 36: $N_{2}^{+} + N_{2} + e^{2} \rightarrow N_{2}^{+} + N_{3}$ 37: $N^{+} + N_{2} + e^{2} \rightarrow N_{2}^{+} + 2e$ 41: $N0 + e^{2} \rightarrow N0^{+} + 2e$ 42: $N_{2} + e^{2} \rightarrow N_{2}^{+} + 2e$	42 f heir	Forward reactions & backward reactions Fotally 84 reactions were taken into account Rate coefficients -Forward reactions: by Arrhenius law using data of C.Park (NASA) -Backward reactions: by the principle of detailed balancing

Development of

1-D Chemical non-equilibrium model of pulsed arc discharges in dry air at atmospheric pressure (84 reactions considered)

Time evolutions in temperature, pressure, mass density, particle composition in a pulsed arc discharge was obtained. →Shock-wave generation

→Dominant reactions for each particle

Comparison with experimental results:

-Neutral particle density,

-Electron density,

-Arc conducting radius and its expanding velocity,

-Radial position of shock-wave surface and its expanding velocity

→ Good agreements were obtained.

Governing equations	
-Mass conservation: $\frac{\partial \rho}{\partial r} + \nabla$	$\nabla \cdot (\rho u) = 0$ -Equation of state
-Momentum conservation:	-Charge neutrality
Axial: $\frac{\partial(\rho u)}{\partial t} + \nabla \bullet (\rho u u) = -\frac{\partial p}{\partial z} + \nabla \bullet$	$\left(\eta\nabla u\right) + \nabla \bullet \left(\eta \frac{\partial u}{\partial z}\right) + \mu_0 \sigma \Re \left[\dot{E}_{\theta} \dot{H}_r^*\right]$
Radial: $\frac{\partial(\rho \upsilon)}{\partial t} + \nabla \bullet (\rho \upsilon \upsilon) = -\frac{\partial p}{\partial r} + \nabla \bullet$	$(\eta \nabla \upsilon) + \nabla \bullet \left(\eta \frac{\partial u}{\partial r}\right) - 2\eta \frac{\upsilon}{r^2} + \frac{\rho v w}{r} + \mu_0 \sigma \Re \left[\dot{E}_{\theta} \dot{H}_z^*\right]$
Swirl: $\frac{\partial(\rho w)}{\partial t} + \nabla \bullet (\rho u w) = \nabla \bullet (\eta \nabla w)$)+ $\frac{\rho v w}{r} - \frac{w}{r} \frac{\partial (r \eta)}{\partial r}$ Reaction heat
-Energy conservation for heavy par	ticles: Energy transfer
$\frac{\partial(\rho h')}{\partial t} + \nabla \bullet (\rho u h') = \nabla \bullet (\lambda_{t}^{tr} \nabla T_{t}) + \sum_{k=1}^{N} [\nabla T_{t}]$	$\left[\left(\rho D \cdot h' \nabla Y \right) \right]_{-} = \sum_{k=1}^{L} \bigwedge_{i=1}^{k} O_{i} + E_{i} \bigwedge_{i=1}^{k} between h \& e$
∂t -Energy conservation for electrons:	$\ell(\beta_{e\ell}^f, \beta_{e\ell}^r = 0)$
$\frac{\partial}{\partial t} \left(n_{\rm e} \frac{5}{2} \kappa T_{\rm e} \right) + \nabla \bullet \left(n_{\rm e} u \frac{5}{2} \kappa T_{\rm e} \right) = \nabla \bullet \left(\lambda_{\rm e}^{\rm tr} \nabla T_{\rm e} \right) -$	$\sum_{i}^{N} \left[\nabla \bullet \left(\frac{1}{m_{e}} \frac{5}{2} \kappa T_{e} \Gamma_{e} \right) \right] + \sigma E_{\theta} E_{\theta}^{*} - P_{rad} - \sum_{\ell (\theta^{i}, \theta^{r}, \pi 0)}^{L} \Delta Q_{\ell} - E_{eh}$
-Mass conservation for each particl	e:
$\frac{\partial(\rho Y_j)}{\partial t} + \nabla \bullet (\rho u Y_j) = \nabla \bullet (\rho D_j \nabla Y_j) +$	$m_{j}\sum_{l}^{L}\left[\left(\beta_{jl}^{r}-\beta_{jl}^{f}\right)\cdot\left(\alpha_{l}^{f}\prod_{i}^{N}n_{i}^{\beta_{d}^{f}}-\alpha_{l}^{r}\prod_{i}^{N}n_{i}^{\beta_{d}^{r}}\right)\right]$
-Maxwell eq. for vector potential:	
$\nabla^2 \dot{A}_{\theta} = j \omega \sigma \mu_0 \dot{A}_{\theta}$	etc

Ex.: React	ions in $Ar-N_2+O_2$ plasma
1: $O_2 + O_2$ $O + O + O_2$ 2: $O_2 + NO$ $O + O + N$ 3: $O_2 + N_2$ $O + O + N$ 4: $O_2 + O$ $O + O + O + C$ 5: $O_2 + N$ $O + O + O + C$ 6: $O_2 + Ar$ $O + O + O + A$ 7: $NO + O_2$ $N + O + H$ 8: $NO + NO$ $N + O + H$ 9: $NO + N_2$ $N + O + H$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
10: NO + O N + O + O 11: NO + N N + O + N 12: NO + Ar N + O + A 13: N,+O, N+N+O,	30: O ₂ ⁺ + N ₂ N ₂ ⁺ + O ₂ 31: O ₂ ⁺ + O O ⁺ + O ₂ ar 32: NO ⁺ + N O ⁺ + N ₂ 33: NO ⁺ + O, O ₂ ⁺ + NO
14: $N_2 + NO$ N+N+O 15: $N_2 + N_2$ N+N+N 16: $N_2 + O$ N+N+O 17: $N_2 + N$ N+N+N 18: $N_2 + Ar$ N+N+Ar 19: $N_2 + e$ N+N+e 20: $N_2 + O$ NO+N	Reaction rate coefficients: #Temperature-dependent approximation 1. Arrhenius type: $a=aT^bexp(-c/T)$ Maxwellian for heavy particles $a=aexp(b+cT+dT^2)exp(-c/T)$ #. Energy Distribution Function:

\Rightarrow	- Conclusions
-A 2 > it an (A	D-2T-NCE model: was developed for high power rgon induction thermal plasmas with molecular gases r+N ₂ , Ar+N ₂ +H ₂ , Ar+N ₂ +O ₂ , Ar+CO ₂ +H ₂ , Ar+CH ₄ +O ₂).
-Noi >T c >N	n-equilibrium effects: hermally and chemically non-equilibrium condition an be seen near the wall in the plasma torch region. on-equilibrium affects prediction f distribution of particle composition.
	Future works -Full coupling with Boltzmann equation -Transport of excited particles -Detailed model of radiation transport Sector to the sector particles

- 1 Chemically non-equilibrium effects
- 2 Thermally non-equilibrium effects in ICP
- 3 Non-Maxwellian EEDF

Keywords:

- -Non-Maxwellian electron energy distribution function (EEDF)
- -Boltzmann equation
- Low electron density situation with high electric field strength

Target:	Gas kind SF_6 , Air, CO_2 , <u>Air+Cu</u>
	Temperature <u>300-3500K</u>
	Electric field Uniform
<u>of hot gas</u>	es are calculated.
Calculatio	n of <u>effective ionization coefficient $\alpha = \overline{\alpha} - \eta$</u>
Calculation of hot gas	n of <u>effective ionization coefficient $\alpha = \alpha - \eta$</u> es by solving Boltzmann equation
Calculation of hot gas using elec	on of <u>effective ionization coefficient $\alpha = \alpha - \eta$</u> es by solving Boltzmann equation pron impact cross-section & composition data.
Calculatio of hot gas using elec	on of <u>effective ionization coefficient $\alpha = \alpha - \eta$</u> es by solving Boltzmann equation tron impact cross-section & composition data.
Calculation of hot gas using elect	on of <u>effective ionization coefficient $\alpha = \alpha - \eta$</u> <u>es by solving Boltzmann equation</u> tron impact cross-section & composition data. D on of <u>critical electric field</u> , which gives $\overline{\alpha} = \alpha - \eta = 0$,

Comparison of critical electric field strength vs T_{g}

