プラズマ光源関連イオンのEBITによる分光

Emission spectroscopy of multiply charged ions related to plasma light sources with an EBIT

2012 年 12 月 11-13 日 核融合科学研究所, 土岐市, 岐阜県

<u>Outline</u>

- Experimental setup
 - Electron beam ion trap (EBIT)
 - EUV spectrometer
- Motivation & Results and discussion for...
 - Sn ions
 - Semiconductor photo-lithography
 - Extreme ultra-violet (EUV) lithography
 - Gd ions
 - Beyond EUV lithography
 - Bi ions
 - Water window, Live cell imaging
 - EBIT emission spectra
 - Comparison with other emissions and Calc. (FAC)
- Summary and Outlook

Ion trap

Well-type potential (DT1,2,3) + Space charge (e-beam)

- High density electron beam Superconductive magnets
- Emission spectroscopy
- Ion extraction; collision expt.

Two EBITs at UEC Tokyo

Tokyo-EBIT since 1995

CoBIT since 2007

Tokyo-EBIT

e-beam energy : 1 – 180 keV e-beam current : 330 mA (max) Magnetic field : 4.5 T (max) Cryostat temp. : 4.2 K (LHe)

<u> CoBIT (Compact, Corona, ... EBIT)</u>

N. Nakamura et al., Rev. Sci. Instrum., <u>79</u> (2008) 063104

The core of CoBIT

Comparison between two EBITs

	Tokyo-EBIT	CoBIT
e-beam energy / keV	1 – 180	0.1 – 2
e-beam current (max) / mA	330	20
Magnetic field (max) / T	4.5 (typically 4.0)	0.2 (typically < 0.1)
Cryostat temp. / K	4.2	77
Coolant	LHe	LN ₂
Height / m	~ 4	~ 0.4

Fractional abundance in hot plasmas

What we can do using an EBIT?

N. Nakamura et al., Rev. Sci. Instrum., 79 063104 (2008)

EUV spectrometer at the Tokyo-EBIT

Metallic Sn/Gd/Bi in a Knudsen cell @570–1100°C

H. Ohashi et al., Rev. Sci. Instrum. 82 083103 (2011)

EUV spectrometer at the Tokyo-EBIT

Back-illuminated CCD

Tokyo-EBIT

Grating chamber

Grating chamber

Back-illuminated CCD

Semiconductor Photo-Lithography

➔ Highly integrated

http://www.llnl.gov/str/Sween.html

Developments of the exposure light wavelength

Fig 1 Slashing Lithography Wavelength to Drive Further Geometry Shrink EUV lithography has been pegged as a technology for the future, but it is approaching practical use fast. Diagram by *Nikkei Electronics* based on material from Intel, International Technology Roadmap for Semiconductors (ITRS), etc.

http://techon.nikkeibp.co.jp/article/HONSHI/20070926/139712/

Extreme Ultra-Violet (EUV) Lithography

EUV emission spectra of Sn ions

J. Yatsurugi et al., Phys. Scr., <u>T144</u> 014031 (2011)

Complementary spectroscopy of Sn ions

Charge exchange collision (CXS)

- → Resonance line
- → <u>Transition between excited states</u>

EBIT : electron impact

→ Resonance line

R. Soufli et al., Appl. Opt., <u>47</u> 25 (2008). M. Fernandez-Perea et al., J. Opt. Soc. Am. A, <u>24</u> 12 (2007).

Next-Generation EUV Lithography at 6.x nm

S.S.Churilov et al., Phys.Scr. 80 045303 (2009)

Figure 3. The calculated wavelength bands of the most intense 4–4 transition in the spectra of the rare-earth 4d- and 4f-ions.

Atomic data for each charge state is needed to understand and optimize the plasma!!

Atomic data accumulation!!

Electron beam energy dependence

Calc. with FAC

Intensity / arb. units

Identification of observed lines with FAC

Identification of observed lines with FAC

lon	Sequence	Lower level		Upper level		Expt.wavelength / nm		Calc. / nm
		Conf.	State	Conf.	State	This work	Previous	FAC
Gd ³⁵⁺	Cu-like	4s	4s _{1/2}	4р	4p _{3/2}	10.246	10.2497(15) ¹ 10.2459(15) ²	10.246
							10.243(3) ³	
Gd ³⁴⁺	Zn-like	4s ²	(4s²) ₀	4s4p	(4s4p) ₁	9.887	9.8824(20) ⁴ 9.8831(10) ⁵ 9.887(2) ⁶	9.850
Gd ³³⁺	Ga-like	4s ² 4p	4p _{1/2}	4s ² 4d	4d _{3/2}	7.421	7.414(20) ⁷	7.382

<u>Under identification</u> for other observed emission lines.

- ¹ J. Reader and G. Luther, Phys. Scr., <u>24</u> 732 (1981)
- ²G. A. Doschek et al., J. Opt. Soc. Am. B, <u>5</u> 243 (1988)
- ³ J. F. Seely *et al.*, Phys. Rev. A, <u>40</u> 5020 (1989)
- ⁴C. M. Brown et al., At. Data Nucl. Data Tables, <u>58</u> 203 (1994)
- ⁵ N. Acquista and J. Reader, J. Opt. Soc. Am. B, <u>1</u> 649 (1984)
- ⁶ J. Reader and G. Luther, Phys. Rev. Lett., <u>45</u> 609 (1980)
- ⁷ K. B. Fournier *et al.*, Phys. Rev. A, <u>50</u> 2248 (1994)

<u>Water window</u> & X-ray microscopy for <u>live</u> cell imaging

LPP spectra of Bi ions

Wavelength (nm)

T. Higashiguchi *et al*., Appl. Phys. Lett., <u>100</u> 014103 (2012)

FIG. 4. (Color online) (a) The comparison between the observed spectrum with numerical calculation under assuming steady-state electron temperatures of 190 and 700 eV, respectively. (b) Calculated spectra for electron temperatures higher than 900 eV.

<u>Summary</u>

- EUV emission spectroscopy of ₅₀Sn, ₆₄Gd and ₈₃Bi ions with an EBIT.
- UTA of 4d-4f and 4p-4d transitions contribute to main emissions for EUV light sources.
- FAC Calc. for line identification
 - discrepancy between Expt. and Calc.
- Comparison with other emission spectra in different Expt.

<u>Outlook</u>

- Identification of observed emission lines
- Lower energy Expt. using CoBIT (→ Lower charge states)
- Charge exchange spectroscopy
 (→ Including transitions between excited states)
- Terbium(₆₅Tb) for BEUVL, Zirconium (₄₀Zr) for water window

Thank you for your attention!!

