2012年度 原子分子データ応用フォーラムセミナー, December 11-13, 2012

大気圧超高純度O₂ガス中 における負イオン移動度測定

Yui Okuyama, Susumu Suzuki, Haruo Itoh (*Chiba Institute of Technology*)

Introduction

- Measurement of negative ion mobility in O₂
- The substance of this presentation
- Experimental details
 - Principle of the mobility measurement
 - Details of the experiment
- Results and discussions
 - Mobility measurement in high-purity O₂
 - Mobility measurement in ultra high-purity O₂
- Conclusions

Introduction

Measurement of negative ion mobility in O₂

Introduction

Measurement of negative ion mobility in O₂

The substance of this presentation

Obtained negative ion mobility in O₂

- 2.31 cm²/V•s in high-purity O₂ (99.9999%)
- 2.39 cm²/V•s in ultra high-purity O₂ (99.99995% with gas filter)

The reason of mobility discrepancies

 \rightarrow impurities contained in O₂

N₂ CO₂ and etc... released from surface of electrodes and chamber →mobility increased at higher E/N region (E/N > 1.77×10⁻¹ Td)
H₂O released from chamber, electrodes and contained in O₂ →forms O₂⁻(H₂O)n cluster ions which leads to decrease mobility.

- Introduction
 - Measurement of negative ion mobility in O₂
 - The substance of this presentation
- Experimental details
 - Principle of the mobility measurement
 - Details of the experiment
- Results and discussions
 - Mobility measurement in high-purity O₂
 - Mobility measurement in ultra high-purity O₂
- Conclusions

Principle of the mobility measurement

Cross section of electrode system and picture of ion drift tube

Cross section of electrode system

Details of the experiment

Repeating measurements were carried out due to removing impurities from surface of electrodes, chamber and gas line.
Interval of each measurement, chamber was pumped under 10⁻⁸ Torr and heated at 373 K over 24 hours.

	high purity cylinder O ₂	Ultra high-purity O ₂
Impurities	99.9999%	99.99995% + gas filter
N ₂	< 0.2 ppm	< 0.2 ppm
СО	< 0.1 ppm	< 0.02 ppm
CO ₂	< 0.1 ppm	< 100ppt
Ar	<0.1 ppm	< 0.05 ppm
H ₂ O	< 0.522 ppm	< 100ppt

Impurities contained in the used oxygen.

- Introduction
 - Measurement of negative ion mobility in O₂
 - The substance of this presentation
- Experimental details
 - Principle of the mobility measurement
 - Details of the experiment
- Results and discussions
 - Mobility measurement in high-purity O₂
 - Mobility measurement in ultra high-purity O₂
- Conclusions

Results and discussions Repeated measurement in high-purity 0, E/p_{0} (V/cm • Torr) 0.1 10 2.6 $d=3 \text{ cm}, p_0=760 \text{ Torr}$ ·1st S 2nd Mobilities of CO_3^{-} , ·8th μ_0^- (cm²/V CO_4 , NO_2 and 11-16th 2.4 NO_3 . 2.31 2.20.01 0.1 E/N (Td)

At last, negative ion mobility takes a constant value of 2.31 cm²/V•s of O_2^- same as our previous report

Decreasing negative ion mobility by repeating measurement

Observed mobility histograms in high-purity O₂

- Introduction
 - Measurement of negative ion mobility in O₂
 - The substance of this presentation
- Experimental details
 - Principle of the mobility measurement
 - Details of the experiment
- Results and discussions
 - Mobility measurement in high-purity O₂
 - Mobility measurement in ultra high-purity O₂
- Conclusions

Varying mobility with repeated measurement

by decrease of H_2O concentration i.e. cluster size of $O_2^-(H_2O)n$ is depend to H_2O concentration. $O_2^-(H_2O)n$ clusters lead to decrease of ion mobility.

Observed mobility histograms

- Introduction
 - Measurement of negative ion mobility in O₂
 - The substance of this presentation
- Experimental details
 - Principle of the mobility measurement
 - Details of the experiment
- Results and discussions
 - Mobility measurement in high-purity O₂
 - Mobility measurement in ultra high-purity O₂
- Conclusions

Conclusions

Negative ion mobility was measured in high purity (99.9999%) and ultra high purity (99.99995% with gas filter) O_2 . Observed mobility was varied with repeating measurement. Two reasons can be considered for varying negative ion mobility in O_2 .

- 1. CO₃⁻, CO₄⁻, NO₂⁻, NO₃⁻ and N₂O₂⁻ are removed by repeated measurement.
- 2. Removing H₂O in O₂ i.e. decreasing of formation O₂⁻(H₂O)*n* clusters using gas filter.

In this present, negative ion mobility was observed as 2.39 cm²/V•s for O_2^- in ultra high purity O_2 .

Thank you very much for your attention