# Laboratory observation of forbidden transitions following charge exchange collisions between solar wind ions and neutrals

<u>N. Numadate</u>, K. Shimada, Y. Uchikura, H. Shimaya, T. Ishida, K. Okada<sup>A</sup>, N. Nakamura<sup>B</sup>, H. Tanuma

Department of Physics, Tokyo Metropolitan University <sup>A</sup>Department of Physics, Sophia University <sup>B</sup>Institute for laser science, University of Electro-Communications

# Outline

# 1. Introduction

- SWCX
- CX
- 2. Experimental setup
- 3. Results
  - Trapping lifetime measurements
  - Soft X-ray observations
- 4. Summary and Future plans

## **Introduction**

# Mysterious soft X-ray emission with a varying intensity, repeating in cycles of a few days, was observed.



S. L. Snowden et al. 1994, 1995

#### **Introduction**

# Soft X-ray emission from a comet was observed and the intensity fluctuation corresponded to the solar activity.



Emission from the comet Hyakutake C. M. Lisse *et al.* 1996 Comparison between the X-ray fluctuation and the solar wind proton flux T. E. Cravens *et al.* 2001

# <u>Solar Wind Charge eXchange (SWCX)</u>

**Charge exchange** 

$$\begin{array}{ll}
\mathbf{A}^{q+} + \mathbf{B} \to \mathbf{A}^{(q-1)+*} + \mathbf{B}^{+} & \mathbf{A}^{q+} : \mathbf{Ion} \\
\downarrow & & \mathbf{B} : \mathbf{Neutral} \\
\mathbf{A}^{(q-1)+} + \mathbf{B}^{+} + hv
\end{array}$$



## **Introduction**



The long-lived, forbidden transitions in the SWCX had not yet been observed by beam-based experiments in the laboratory.

The ASTRO-H (to be launched on 12 Feb. 2016) can separate the resonance, inter-combination and forbidden lines.

#### Purpose

- Reproduction of the observed solar wind chargeexchange with collision energy of 0.2 - 4.2 keV/u in the laboratory
- Observation of the long-lived, forbidden transitions following charge exchange collisions with an ion trap

**Collision system in our experiment:** 



## Collision system for spectroscopy



## Kingdon ion trap



| <u>Motion eq</u>   | uation of t         | rapped ion          |
|--------------------|---------------------|---------------------|
| Radial             | (r direction        | l)                  |
| d <sup>2</sup> r   | $m\dot{	heta}^2$    | dV(r)               |
| $m \frac{m}{dt^2}$ | $r - \frac{r}{r} =$ | $-qe \frac{dr}{dr}$ |
| → <u>Logarit</u>   | <u>hmic poten</u>   | tial V(r)           |
|                    |                     |                     |
| > Axial (z         | direction)          |                     |
|                    | $d^2 \pi$           | dV(z)               |

- $m\frac{d^{2}z}{dt^{2}} = -qe\frac{dV(z)}{dz}$  $\rightarrow \underline{\text{Harmonic potential V(z)}}$
- Trajectory simulation of trapped ion (view from above the trap)

## Soft X-ray detector

# Window-less Silicon Drift Detector (SDD)



- Detection efficiency: ~ 100 %
- FWHM: ~ 80 eV @ ~ 600 eV
- Detection area: 10 mm × 10 mm
- Peltier cooling

#### Timing chart of the ion trapping and the soft X-ray measurements



# Trapping lifetime measurements Observation of the forbidden line

#### **Results of lifetime measurements**

# Lifetime measurement of O<sup>6+</sup> ions

 $H_2$  pressure in the trap :  $4.4 \times 10^{-7}$  Pa



 $\frac{\tau \sim 270 \text{ ms}}{\nu = 4.0(0.4) \times 10^4 \text{ m/s}}$ E<sub>cm</sub> = 13.7 eV  $\sigma = 1.2(0.8) \times 10^{-14} \text{ cm}^2$ 

Reasons for the ion decay in the trap

- Charge exchange
- Elastic scattering

Trapping lifetime was long enough to observe the forbidden transition.  $\tau \sim 270 \text{ ms} >> 1 \text{ ms}$ 

# Forbidden line from O<sup>6+</sup> ions produced by charge exchange of O<sup>7+</sup> - He system



# Resonance line from O<sup>6+</sup> ions produced by charge exchange of O<sup>7+</sup> - H<sub>2</sub> system



 Deconvolution using Gaussian functions

# Comparison of the forbidden and the resonance lines from O<sup>6+</sup> ions



Forbidden line:  $1s^2 - 1s2s$ Resonance lines:  $1s^2 - 1snp$  (n = 1 - 3)

Peak positions
 Forbidden line measurement: 560 eV
 Resonance line measurement: 570 eV
 FWHM: ~ 85 eV

There was a significant difference between their peak positions.

We succeeded in the observation of the forbidden lines in the lab.

#### <u>Summary</u>

- We developed the Kingdon ion trap system and achieved much longer trapping lifetime than the forbidden transition lifetime of O<sup>6+</sup>.
- We succeeded in the laboratory observation of the forbidden transition following the SWCX.

# Future plans

- > Observation of other forbidden transitions in C<sup>4+</sup>, N<sup>5+</sup> etc.
- > Perform measurements using a hydrogen atom target
- Precise spectroscopy with a soft X-ray spectrometer
- Measurements of the absolute values of forbidden emission cross sections

# **Collaborators:**

Astrophysics Group, Tokyo Metropolitan University: T. Ohashi, Y. Ishizaki, Y. Ezoe, S. Yamada JAXA / ISAS: K. Mitsuda, K. Shinozaki

IAPCM (Beijing):

L. Liu, J-G. Wang

# **Financial Support:**

a Grant-in-Aid for Scientific Research (A) from MEXT