「原子分子データ応用フォーラムセミナー」 2016年1月27-29日@核融合科学研究所

ニ次イオン質量分析法による液体物質の 高速重イオン照射効果の直接観察

京都大学工学研究科附属量子理工学教育研究センター 原子核工学専攻

<u>土田秀次、野村真史</u>、古谷亮介、間嶋拓也、伊藤秋男

1

粒子線治療の歴史

年代	人物	出来事
1895	Röentgen	X線の発見(翌年Voigtが咽頭がんのX線治療を行う)
1898	Curie夫妻	ラジウム(²²⁶ Ra、a線崩壊核種)を発見(1903年子宮がんにラジウム腔内照射を行う)
1904	William H Bragg	「ラジウムのイオン化曲線について : On the ionization curves of Radium」論文発表
1930年 代	Cockroft & Walton Van de Graaf Lawrence	粒子線加速器の開発 倍電圧整流回路(コンデンサー・ダイオード)による高電圧発生装置の開発 静電式高電圧発生装置の開発 サイクロトロンの開発
1946	Robert R Willson	「高速陽子の放射線医学応用:Radiological Use of Fast Protons」論文発表 陽子線治療を提唱
1955	Tobias	世界初 陽子線による脳下垂体腫瘍の臨床研究 米国カルフォルニア大学ローレンス・バークレー研究所
1957	スウェーデン	ウプサラ大学で陽子線治療の臨床研究開始
1961	米国	最初の陽子線治療開始(ハーバード大学マサチューセッツ総合病院
1973	ハウンズフィールド 英国	X線CTの発明 がん病巣の形と位置の正確な診断が可能になる
1979	日本	70MeVサイクロトロンを用いた陽子線臨床研究開始 放射線医学総合研究所
1983	日本	シンクロトロンを利用した陽子線による臨床研究開始 筑波大学(高エネルギー物理学研究所にて)
1990	米国	初の病院内に設置する医療専用治療装置 ロマリンダ大学医療センター
1994	日本	世界初 重粒子線がん治療装置(HIMAC)完成 臨床開始
2001	日本	世界初 陽子線・炭素線の両方の治療が行える施設が完成 兵庫県粒子線医療センター(2004年から炭素線治療開始)

粒子線がん治療施設の現状(国内)

放射線照射による細胞損傷機構

Η

不対電子

主な研究テーマ

- ・原子分子の衝突物理学の解明
- ・生体分子・液体物質の照射効果に関する研究
- ・マイクロビーム照射技術の開発
- ・ホウ素中性子捕捉療法における線量計測技術の開発

液体中(水)の照射反応を直接観察

生体分子の重イオン衝突反応

液体環境下の場合

本研究

問接作用による生体分子損傷 ラジカルスカベンジャーによって 水分子の電離から生じるOH*を低減できるか?

アスコルビン酸によるスカベンジャー効果測定

直接作用による生体分子損傷水環境下での生体分子の電離・分解反応は どの程度起きているか?

アミノ酸(グリシン)水溶液の照射効果測定

(液体分子線法&キャピラリーマイクロビーム法)

アスコルビン酸水溶液からの二次イオン

TOFスペクトル(アスコルビン酸水溶液)

H₃O⁺ピーク強度のアスコルビン酸濃度依存性

ピーク位置の変化のアスコルビン酸濃度依存性

表面におけるカチオン・アニオン濃度の偏り により表面電荷が生じる

表面電荷の起源

化学平衡モデル(H₃O⁺収量)

R1 アスコルビン酸の酸解離反応 AsA + H₂O 与 AsA⁻ + H₃O⁺ pK_a = 4.25 R2 アスコルビン酸のラジカルスカベンジャー反応

 $2AsA + OH \rightarrow AsA^{-} + DHA$

pHと二次イオン収量・表面電荷の関係

pHの増加に伴いH₃O+収量が増加する理由

H₃O⁺の表面密度のpH依存性が関係

H₃O⁺はpH < 4でのみ表面に存在する

♦ 放出収量は溶液のpHに依存する

S. Enami et al., J. Phys. Chem. Lett. 1 (2010) 1599-1604

pH毎の化学平衡モデル

表面とバルク領域のH₃O⁺の濃度

 $\alpha, K_{\rm AsA^-}, W_{\rm AsA^-}, K_{\rm H_3O^+}, W_{\rm H_3O^+}$

化学平衡モデルと実験結果との比較

• 吸着平衡定数(267 K)

$$\begin{pmatrix}
K_{H_3O^+} = 8 \times 10^4 (M) \\
K_{AsA^-} = 4 \times 10^4 (M)
\end{pmatrix}$$

・ 293K 水
 $V \\
K_{H_3O^+} = 4 \times 10^3 (M)
\end{pmatrix}$

吸着平衡定数の温度依存性

吸着反応・・・発熱反応

温度増加

→平衡定数減少

→ 温度依存性の観点から妥当

S. Enami et al., J. Phys. Chem. Lett. 1 (2010) 1599-1604

スカベンジャー効果が起こる アスコルビン酸濃度の上限値

他研究との比較(スカベンジャー効果)

アスコルビン酸のヒドロキシルラジカルのスカベンジャーとして働く 濃度の上限値は70 µM

K. Hata et al., Biochem. Biophys. Res. Commun., 434 (2013) 341-345

グリシン水溶液からの二次イオン放出

TOFスペクトル(グリシン水溶液)

二次イオン収量のグリシン濃度依存性

二次イオン収量のグリシン濃度依存性-プロトン付加反応

他研究との比較(気相と液相との違い)

S. Bari et al., Eur. Phys. J. D 51, 81-87 (2009) (2005) *NIST Chemistry WebBook*.

まとめ

高速重イオンの生体影響を摸擬するため、真空中液体分子線に よる水溶液標的への重イオン照射効果を調べた。 反応生成物を二次イオン質量分析により測定し、 ①アスコルビン酸水溶液に対するラジカルスカベンジャー効果 ②アミノ酸(グリシン)の照射効果 を調べた。

<u>①ラジカルスカベンジャー効果</u>

アスコルビン酸によるスカベンジャー効果が観測 溶液濃度上限値:70 µM

<u>②アミノ酸の照射効果</u>

アミノ酸分子の多重分解が抑制 水分子による遮蔽効果やエネルギー緩和が関与