大気化学反応を駆動する HOxとNOxラジカルについて

京都大学大学院 人間·環境学研究科/地球環境学堂

国立環境研究所 地域環境研究センター

梶井 克純

岐阜, Jan. 2016

大気中で重要なラジカル種と役割 成層圏 (15-55 km) OH, HO,, CI, CIO, Br, BrO: オゾン層破壊 0:オゾン生成 HOxラジカル 対流圏 (表層-15 km) OH: ほとんどの化学物質の除去 HO2, RO2: オキシダント生成(オゾンを含む) NO, NO,: 有機物(VOC)の触媒的酸化 NO₃:VOCの酸化

HOxサイクルによるオゾンの 光化学的生成機構

$$O_3 + h\nu \rightarrow O(^1D) + O_2$$

 $O(^1D) + H_2O \rightarrow 2OH$

$$OH + CH_4 + O_2 \rightarrow CH_3O_2 + H_2O$$

$$CH_3O_2 + NO \rightarrow CH_3O + NO_2$$

$$CH_3O + O_2 \rightarrow CH_3O \cdot O_2^{\#}$$

$$CH_3O \cdot O_2^{\#} \rightarrow CH_2O + HO_2$$

OHラジカルの光定常状態

LIF法によるOHラジカルの検出

OHラジカルのLIFスペクトル

検出下限値の見積もり

$$LOD \approx \left(S/N\right) \left(\frac{1}{m} + \frac{1}{n}\right)^{1/2} \frac{1}{S_{\text{OH}}} \left(\frac{S_{\text{BG}}}{I \cdot dt}\right)^{1/2}$$

S/N : signal-to-noise ratio

m,n : numbers of measurement for sample and zero point

dt : integration interval (s)

 S_{BG} : sensitivity of background normalized by laser intensity

現状での性能 *LOD* = 2 x 10⁵ radicals cm⁻³ (~0.01 ppt) @S/N = 2 @dt =1分

OHラジカル計測用超高感度LIFセル

北海道利尻島における野外観測

利尻島におけるOH濃度観測結果

OHラジカルの光定常状態

化学摂動法によるOH消失過程の検出

ポンプ・プローブ法によるOH反応性(k)測定原理

ポンプ・プローブ法によるOH反応性測定セル

ポンプ・プローブ法によるOH反応性測定測定システム

Sadanaga et al., RSI 2004

典型的なOH radicalsの減衰

同時計測したOHと反応する化学物質

/OH reactivity Pump&probe LIF

/ozone /CO /NO /NO ₂ /SO ₂	UV absorption NDIR chemiluminescence LIF pulsed fluorescence		
		/ HCs	GC-FID, GC-MS
		/OVOCs	PTR-MS

110 kinds of chemical species were simultaneously measured.

各化学成分のOH反応性に対する寄与

Yoshino et al., AE 2006

BEACHON-ROCS 2010 (Rocky Mountain Organic Carbon Study)

NCAR, Tokyo Met. Univ. Univ. Wisconsin, SUNY Univ. Houston, Univ. Innsbruck

BEACHON- 2008 Aug. 22th - 28th

- In Aug. 23rd, tornado brought bursting of VOCs.
- In Aug. 28, MBO increased in night time.

Nakashima et al., AE 2013

OH反応性の地域特性とその内訳

Kato et al., JJSAE 2012

植物VOC

スモッグチャンバー NIES (Tsukuba)

光化学生成物

自動車排気ガス

種々の環境下での大気質診断

NOX-LI

OH reactivity

Fast GC FID

Ozone reactivity

PTR-MS

各BVOCのOH反応性における寄与

自動車排ガス測定装置の概略

OH反応性(OH reactivity)

Nakashima et al., AE 2010

HOxサイクルとHOx収率

OH減衰とHOx収率測定概念図

ポンプ・プローブ法によるHO2生成収率測定

HOxサイクルとNO₂生成

Yoshizumi Kajii

Assc. Prof. Shungo Kato (TMU)

Assis.Prof. Y.Sakamoto

Res.Assc.Yoshi Nakashima (TUAT)

Post Doc. Charlotte Jones

Post Doc. Hiroshi Tsurumaru

MsC賈 天宇

Post Doc. Akira Ida

PhD Ramasamy Sathiyamurthi

MsC Kazuhide Nagai

MsC 呉 偉嘉

