LHDプラズマ中電子密度のトムソン散乱計測結果に対する ガウス過程回帰

中村紀彦1, 大杉拓也1, 山田一博2, 蓮尾昌裕1, 藤井恵介1

1京都大,2核融合研

シミュレーションコードの入力としてプラズマ実験の計測データを使用するためには,ノ イズを含む離散的な計測データ点から背後の関数を推定することが求められる.特に,輸送 係数計算のような多くのシミュレーションコードは,電子密度のようなマクロな物理量の空 間勾配に強く影響を受ける.

多項式曲線やスプライン曲線を用いた既存のフィッティング手法では、アンダーフィッティングやオーバーフィッティングを避けるために、何次の項までを用いるかのようなモデルの複雑さを人為的に制御する必要がある[1].例えば、モデルが単純な場合(多項式の次元がデータの精度と比較して小さい場合)、背後の細かい構造は捉えられない(アンダーフィッティング).反対にモデルが複雑な場合、フィッティング曲線はノイズによる高周波分散に過剰に従い、勾配は非常に大きな正負の値が細かく交互に表れる分布となる(オーバーフィッティング).

ベイズ統計の枠組みでは、データの従う事前分布をパラメータ化し、周辺尤度を最大化す る条件を見つけることで、このようなアンダーフィッティングやオーバーフィッティングを 避けることができる。そのうちの一つの手法であるガウス過程回帰では、計測データは多変 量ガウス分布に従うとモデル化される。その共分散関数をパラメータ化することで、空間分 解能と不確かさの最適なトレードオフを決定できる。加えて、ガウス過程回帰はフィッティ ングの期待値だけでなく不確かさも推定することが可能である。このような利点のため、近 年はAlcator C-Modにおける電子密度や電子温度データのフィッティング[2]など、データから 背後の関数を推定するために使われ始めている。

本研究では、ガウス過程回帰をLHDにおけるトムソン散乱計測結果[3]に適用した. 計測結 果は負の計測点や外れ値を含む. そこで、フィッティング結果を正値に限定し、尤度関数に 裾の重いt分布を用いたモデルを開発し、上記の議論を適用した. 図1に、推定された電子密度 の空間分布を示す. 正値に限定された、r = 0.67 [m]付近の外れ値に影響されないフィッティ ング結果が得られた.

図 1 解析に用いたデータ点とフィッ ティング結果.

左に単純なガウス過程モデルによるフ ィッティングを,右に改良したガウス 過程モデルによるフィッティングを示 す.トムソン散乱計測結果を赤丸,フ ィッティングの期待値を青線で示す. 灰色の領域はフィッティングの不確か さ+2σを示す.

[1] A. E. White, L. Schmitz, W. A. Peebles, T. A. Carter, G. R. McKee, M. W. Shafer, G. M. Staebler, K. H. Burrell, J. C. DeBoo, and R. Prater, Phys. Plasmas 17, 020701 (2010).

[2] M. A. Chilenski, M. Greenwald, Y. Marzouk, N. T. Howard, A. E. White, J. E. Rice and J. R. Walk, Nucl. Fusion 55, 023012 (2015).
[3] I. Yamada, K. Narihara, H. Funaba, R. Yasuhara, T. Kohmoto, H. Hayashi, T. Hatae, H. Tojo, T. Sakuma, H. Yoshida, H. Fujita, and M. Nakatsuka, Journal of Instrumentation 7, C05007 (2012).