Spectroscopic Examination of Fulcher-α Band of Microwave Discharge H₂-D₂ and H₂-He Plasmas

Yurina Honda, Yasuka Onisi, Alejandro Álvaro-González, Atsushi Nezu and Hiroshi AKATSUKA, Tokyo Institute of Technology
My Laboratory

• Fundamentals of low-temperature plasmas
 – Diagnostics based on optical emission spectroscopy measurement
 • Collisional radiative modeling to determine T_e and N_e
 • Rotational temperature determination
 • Actinometry measurement

 – Arc-jet along magnetic field
 • Effect of magnetic nozzle
 • Lowering of space potential
1. Introduction

Hydrogen plasma
— Industrially & fundamentally interesting
 • Microelectronics, surface processing of SiC substrate
 • Preparation of Carbon Thin Films
 • Boundary Region of Thermonuclear Fusion Reactors Confined Magnetically, Particularly, Divertor Region

One of Key Issues — Isotope Effect
• Characteristics of non-equilibrium of H₂ plasma should be understood
 • Vibrational Distribution Function (VDF)
 • Rotational temperature

• Particularly, Non-Equilibrium molecular isotope effect
 • Vibrational quanta
 • Inertia moment, thermal conductivity, etc.
 • Even for H₂/D₂ discharge plasmas, not fully studied
For precise analysis of thermal load in divertor region,

Energy relaxation of neutral hydrogen molecular isotopes should be studied experimentally.

- Vibrational/rotational non-equilibrium Fulcher-α band of H$_2$ and D$_2$ of pure H$_2$, D$_2$ and their 1:1-mixture plasmas [1].
 - In [1], however, only 1:1 mixtures, and no observation of other mixture ratio.
Objective of this study

• To examine T_{vib} and T_{rot} of microwave discharge H_2, D_2 mixture plasmas, and H_2-He mixtures of H_2/HD/D$_2$-Fulcher-α band ($d\,^3\Pi_u \rightarrow a\,^3\Sigma_g^+$) – and to find their differences, if any.

• To examine dependence of T_{vib} and T_{rot} of H_2/HD/D$_2$ on the H_2/D$_2$ mixture ratio.
2. Experiments

- Optical Emission Spectroscopy (OES) Measurement

- Ultimate pressure: 0.01 Torr
- Discharge gases: H₂, D₂, He (purity 99.5 %) and their mixture
- Discharge pressure: 0.5 – 3 Torr
- Microwave frequency: 2.45 GHz
- Microwave power: 350 W
- Inner diameter of cylindrical quartz tube: 26 mm
At each position specified above, we conduct OES measurement of Fulcher-α band spectrum.
3. Remarks for Data Analysis

— Fulcher-α band

- $d \, ^3\Pi_u \rightarrow a \, ^3\Sigma^+_g$
- Observed over 590 – 640 nm
- Kado et al. confirmed validity of Franck-Condon principle for diagonal transition for Fulcher-α transition [3 – 4].
- Selection rules
 - $\Delta J = 0, \pm 1$ (except $0 \rightarrow 0$)
 - $(-) \leftrightarrow (+)$ \cdot $g \leftrightarrow u$
 - $s \leftrightarrow s$, $a \leftrightarrow a$, $s \leftrightarrow a$
 - $\Sigma^+ \leftrightarrow \Sigma^-$ as Hund (a, b)

Potential curves of electronic levels of H_2 molecule related with Fulcher-α band

Rotational structure in the transition

- We must consider parity (+, −), symmetry of nuclei (s, a), nuclear spin (o, p).

The upper state of Fulcher-α, \(d \, ^3\Pi_u \), is doubly degenerated.
- \(d \, ^3\Pi_u^- \) — For even \(J' \), \(H_2(-, s, p) \), \(D_2(-, s, o) \)
 - For odd \(J' \), \(H_2(+, a, o) \), \(D_2(+, a, p) \)
- \(d \, ^3\Pi_u^+ \) — For even \(J' \), \(H_2(+, a, o) \), \(D_2(+, a, p) \)
 - For odd \(J' \), \(H_2(-, s, p) \), \(D_2(-, s, o) \)
Due to selection rules, $\Delta J = 0$ corresponds to $d\;^3\Pi_u^-$ (Q-branch), $\Delta J = \pm 1$ to $d\;^3\Pi_u^+$ (R and P branches).

- $d\;^3\Pi_u^+$ state must not be chosen, since its coupling with level $e\;^3\Sigma_g^+$ is too strong, in addition to the respect that $d\;^3\Pi_u^+$ state can predissociate.

- P and R branches are also known to show anomaly with respect to Hönl-London factor.

- Therefore, we must examine Q-branch.
4. Results 1.

- Observed Fulcher-α band spectra \(\text{d } ^3\Pi_u \rightarrow \text{a } ^3\Sigma_g^+ \)

- Imaging Monochromator Spectrograph MS3504i, SOL Instruments Ltd.,
- Line density 1800 mm\(^{-1}\), blaze 400 nm (resolution 0.04 nm)
- Cooled CCD Detector DU420A-OE, Andor Technology Ltd.
5. Data Analysis for Population Density

- Line intensity for the transition from the upper state \((d, \nu', J')\) to the lower state \((a, \nu'', J'')\) as \(I_{av''J''}^{dv'J'}\), is given by

\[
I_{av''J''}^{dv'J'} = \frac{hc}{\lambda_{av''J''}} A_{av''J''}^{dv'J'} N_{dv'J'}
\]

where

- \(h\) — the Planck constant
- \(c\) — velocity of light
- \(\lambda_{av''J''}^{dv'J'}\) — wavelength of the transition
- \(A_{av''J''}^{dv'J'}\) — corresponding transition probability
- \(N_{dv'J'}\) — number density of the level \((d, \nu', J')\)
The transition probability

• The transition probability is given by

\[A_{av''J''}^{dv'J'} = \frac{16\pi^3}{3h\varepsilon_0 \left(\lambda_{av''J''}^{dv'J'} \right)^3 \left(R_e \right)^2} q_{v'v''} \frac{S_{J'J''}}{2J' + 1} \]

— where

• \(\varepsilon_0 \) — vacuum permittivity

• \(\left(R_e \right)^2 \) — the transition moment

• \(q_{v'v''} \) — the Franck-Condon factor

• \(S_{J'J''} \) — the Hönl-London factor,

• \(S_{J'J''}^{Q} = J' + 1/2 \)
Determination of the rotational temperature of the upper state (d, v'):

• Then, we have following equation to determine the rotational temperature of the upper state (d, v'):

\[
N_{dv', J'} = \frac{N_{dv'}(2J' + 1)g_{as}^{J'} \exp \left[-\frac{F_d(J', v')}{kT_{rot}^{dv'}} \right]}{\sum_{J'} \left\{ (2J' + 1)g_{as}^{J'} \exp \left[-\frac{F_d(J', v')}{kT_{rot}^{dv'}} \right] \right\}}
\]

\[- F_d(J', v') : \text{Energy level of state (d, v', J')} \]
Statistical Weight

• For H_2,
 – For $J = 2, 4, \ldots$, of $d^3\Pi_u^-$ (= para), $g^H_a = 1$
 – For $J = 1, 3, \ldots$, of $d^3\Pi_u^-$ (= ortho), $g^H_s = 3$

• For D_2,
 – For $J = 2, 4, \ldots$, of $d^3\Pi_u^-$ (= ortho), $g^D_s = 6$
 – For $J = 1, 3, \ldots$, of $d^3\Pi_u^-$ (= para), $g^D_a = 3$
6. Results and discussion

6.1 Boltzmann plots and rot-vibrational distributions of d state

(A) H\textsubscript{2} plasma

- \(T_{\text{vib}} \sim 0.39 - 0.41 \text{ eV over } 0 \leq v' \leq 3, \text{ almost independent of } z.\)
6. Results and discussion

6.1 Boltzmann plots and vibrational distributions of d state (Contd.)

Levels $v' = 0 – 3$ Characterized by T_{vib}.

Level $v' = 4$

$n(v' = 4)$ is found to be much less populated than the extrapolated value from $0 \leq v' \leq 3$, due to predissociation level to H(1s) + H(2s) states between $v' = 3$ and 4 of d state.
6. Results and discussion

6.1 Boltzmann plots and rot-vibrational distributions of d state

(B) D_2 plasma

- $T_{\text{vib}} \sim 0.39 - 0.41$ eV, almost the same value with that of H_2.
- $n(v' = 4)$ is also described with the same T_{vib} with $0 \leq v' \leq 3$, due to predissociation level at $v' \geq 4$.
6. Results and discussion

6.2 T_{rot} of each vibrational level of d state

Essential finding

$T_{\text{rot}}^{d v'}(H_2) > T_{\text{rot}}^{d v'}(D_2)$ for $v' = 0, 1$.

$T_{\text{rot}}^{d v'}(H_2) < T_{\text{rot}}^{d v'}(D_2)$ for $v' = 2 - 4$.
Both for H_2 and D_2

- T_{rot} becomes higher as flowing to the downstream, because of energy relaxation from electron and vibration to rotation.

 – Energy deposition process

 - Microwave \rightarrow electron translation \rightarrow (collisional excitation) \rightarrow H_2 vibrations \rightarrow (Relaxations) \rightarrow H_2 rotations and translations

- The higher vibrational states have lower T_{rot}.

 – Angular momentum of H_2 molecule should be conserved in $H_2(X) + e^- \rightarrow H_2(d : \nu', J') + e^-$.

 – The higher the ν' level, the larger the moment of inertia.

 - $I_X \omega_X = I_{d\nu_1} \omega_{d\nu_1} = I_{d\nu_2} \omega_{d\nu_2}$

 - If $I_{d\nu_2} > I_{d\nu_1}$, then $\frac{1}{2} I_{d\nu_2} \omega_{d\nu_2}^2 < \frac{1}{2} I_{d\nu_1} \omega_{d\nu_1}^2$ Hence, $T_{\text{rot}}^{\nu_2} < T_{\text{rot}}^{\nu_1}$
• The vibrational quanta are larger for lighter isotopic molecules.
• The difference in T_{rot} will be more emphasized for H_2 than for D_2.
• The difference in the thermal conductivity should be also considered.
6. Results and discussion

6.3 Comparison of T_{rot} of H$_2$/HD/D$_2$ in H$_2$-D$_2$ plasma

Levels with $v' = 2$ cannot be analyzed due to spectral overlapping.
6. Results and discussion

6.3 Comparison of T_{rot} of H$_2$/HD/D$_2$ in H$_2$-D$_2$ plasma (Contd.)

- Generally, heavier isotopic molecules have higher T_{rot}, although the difference is not so remarkable and with exceptions.
- The higher concentration of D$_2$ makes T_{rot} higher, except for pure D$_2$ discharge.
- The heavier, the smaller thermal conductivity.
- The smaller the vibrational quanta, the more frequent the collisional relaxation becomes.
- It is unclear why pure D$_2$ discharge has lower T_{rot} than the that with H$_2$:D$_2$ = 1:3 mixture.
For H$_2$ – He mixture plasma

- This time, microwave power is much larger than H$_2$-D$_2$ experiments, so the direct comparison is not appropriate.
 - But, in general, it is found that He admixture makes T_{rot} higher.
7. Summary

• We examined Fulcher-α band of microwave discharge H₂/D₂ plasma by OES measurement.
 • T_{rot} increased as the plasma flowed to the downstream direction.
 • T_{rot} monotonically became lower for higher ν' levels, while T_{vib} was almost constant ~ 0.4 eV.
 • $T_{\text{rot}}^{d\nu'}(H_2) > T_{\text{rot}}^{d\nu'}(D_2)$ for $\nu' = 0, 1$, while $T_{\text{rot}}^{d\nu'}(H_2) < T_{\text{rot}}^{d\nu'}(D_2)$ for $\nu' = 2 - 4$.
 • The higher concentration of D₂ resulted in increase in T_{rot}, except for pure D₂ discharge.
 • He admixture made T_{rot} higher.