### Spectroscopic Examination of Fulcher- $\alpha$ Band of Microwave Discharge H<sub>2</sub>-D<sub>2</sub> and H<sub>2</sub>-He Plasmas

Yurina Honda, Yasuka Onisi, Alejandro Álvaro-González, Atsushi Nezu and <u>Hiroshi AKATSUKA</u>, Tokyo Institute of Technology

# My Laboratory

- Fundamentals of low-temperature plasmas
  - Diagnostics based on optical emission spectroscopy measurement
    - Collisional radiative modeling to determine  $T_{\rm e}$  and  $N_{\rm e}$
    - Rotational temperature determination
    - Actinometry measurement
  - Arc-jet along magnetic field
    - Effect of magnetic nozzle
    - Lowering of space potential

### 1. Introduction

### Hydrogen plasma

- Industrially & fundamentally interesting
  - Microelectronics, surface processing of SiC substrate
  - Preparation of Carbon Thin Films
  - Boundary Region of Thermonuclear Fusion Reactors Confined Magnetically, Particularly, Divertor Region

One of Key
 Issues —
 Isotope Effect

### Characteristics of non-equilibrium of H<sub>2</sub> plasma should be understood

- Vibrational Distribution Function (VDF)
- Rotational temperature
- Particularly, Non-Equilibrium molecular isotope effect
  - Vibrational quanta
  - Inertia moment, thermal conductivity, .etc.
  - Even for H<sub>2</sub>/D<sub>2</sub> discharge plasmas, not fully studied

For precise analysis of thermal load in divertor region,

Energy relaxation of neutral hydrogen molecular isotopes should be studied experimentally.

• Vibrational/rotational non-equilibrium

Fulcher- $\alpha$  band of H<sub>2</sub> and D<sub>2</sub> of pure H<sub>2</sub>, D<sub>2</sub> and their 1:1-mixture plasmas [1].

In [1], however, only 1:1 mixtures, and no observation of other mixture ratio.

# **Objective of this study**

• To examine  $T_{vib}$  and  $T_{rot}$  of microwave discharge H<sub>2</sub>, D<sub>2</sub> mixture plasmas, and H<sub>2</sub>-He mixtures of H<sub>2</sub>/HD/D<sub>2</sub>-Fulcher- $\alpha$  band (d <sup>3</sup> $\Pi_u$  $\rightarrow$  a <sup>3</sup> $\Sigma_g^+$ )

– and to find their differences, if any.

• To examine dependence of  $T_{vib}$  and  $T_{rot}$  of  $H_2/HD/D_2$  on the  $H_2/D_2$  mixture ratio.



### 2. Experiments (1) $H_2/D_2$ mixture plasma

Microwave discharge H<sub>2</sub> plasma



At each position specified above, we conduct OES measurement of Fulcher- $\alpha$  band spectrum.

### 3. Remarks for Data Analysis

— Fulcher- $\alpha$  band



Potential curves of electronic levels of  $\rm H_2$  molecule related with Fulcher- $\alpha$  band

S. Kado: "Molecular Spectroscopy in Fusion Plasmas~Spectra of Hydrogen Molecules in Visible Region~", Plasma Phys. Control. Fusion, Vol. 80, No. 9, pp. 749 – 755. (2004)

• d 
$${}^{3}\Pi_{u} \rightarrow a \, {}^{3}\Sigma_{g}^{+}$$

- Observed over 590 640 nm
- Kado *et al.* confirmed validity of Franck-Condon principle for diagonal transition for Fulcher-α transition [3 – 4].

Selection rules

•  $\Delta J = 0, \pm 1 \text{ (except } 0 \rightarrow 0)$ 

• 
$$(-) \leftrightarrow (+)$$
 • g  $\leftrightarrow$  u

- $s \leftrightarrow s$ ,  $a \leftrightarrow a$ ,  $s \leftrightarrow a$
- $\Sigma^+ \leftrightarrow \Sigma^-$  as Hund (a, b)

### Rotational structure in the transition

 We must consider parity (+, -), symmetry of nuclei (s, a), nuclear spin (o, p).



The upper state of Fulcher- $\alpha$ , d  ${}^{3}\Pi_{u}$ , is doubly degenerated.

• d  ${}^{3}\Pi_{u}^{-}$  — For even *J*', H<sub>2</sub>(-, s, p), D<sub>2</sub>(-, s, o) For odd *J*', H<sub>2</sub>(+, a, o), D<sub>2</sub>(+, a, p) • d  ${}^{3}\Pi_{u}^{+}$  — For even *J*', H<sub>2</sub>(+, a, o), D<sub>2</sub>(+, a, p) For odd *J*', H<sub>2</sub>(-, s, p), D<sub>2</sub>(-, s, o)

## Q-branch should be measured!

#### •Due to selection rule s $\leftrightarrow a$ , $\Delta J = 0$ corresponds to d ${}^{3}\Pi_{u}^{-}$ (Q-branch), $\Delta J = \pm 1$ to d ${}^{3}\Pi_{u}^{+}$ (R and P branches).

- d  ${}^{3}\Pi_{u}{}^{+}$  state must not be chosen, since its coupling with level e  ${}^{3}\Sigma_{g}{}^{+}$  is too strong, in addition to the respect that d  ${}^{3}\Pi_{u}{}^{+}$  state can predissociate.
- P and R branches are also known to show anomaly with respect to Hönl-London factor.
- Therefore, we must examine **Q-branch**.

## 4. Results 1.

• Observed Fulcher- $\alpha$  band spectra d  ${}^{3}\Pi_{u} \rightarrow a {}^{3}\Sigma_{g}^{+}$ 



- Imaging Monochromator Spectrograph MS3504i, SOL Instruments Ltd.,
- Line density 1800 mm<sup>-1</sup>, blaze 400 nm (resolution 0.04 nm)
- Cooled CCD Detector DU420A-OE, Andor Technology Ltd.

- Data Analysis for Population Density 5.
  - Line intensity for the transition from the upper state (d, v', J') to the lower state (a, v", J") as  $I_{av'I'}^{dv'J'}$ , is given by

$$I_{av''J'}^{dv'J'} = \frac{hc}{\lambda_{av''J'}^{dv'J'}} A_{av''J''}^{dv'J'} N_{dv'J'}$$

where

- h the Planck constant
- -c-velocity of light- $\lambda_{av'J'}^{dv'J'}$ -wavelength of the transition- $A_{av'J'}^{dv'J'}$ -corresponding transition probability
- $N_{dv',l'}$  number density of the level (d, v', J')

### The transition probability

The transition probability is given by

$$A_{av''J'}^{dv'J'} = \frac{16\pi^3}{3h\epsilon_0 \left(\lambda_{av''J'}^{dv'J'}\right)^3} \left(\overline{R}_{e}\right)^2 q_{v'v''} \frac{S_{J'J''}}{2J'+1}$$
  
where

- $\varepsilon_0$  vacuum permittivity
- $\left(\overline{R}_{e}\right)^{2}$  the transition moment
- $q_{v'v''}$  the Franck-Condon factor
- $S_{J'J''}$  the Hönl-London factor,

• 
$$S_{J'J''}^{Q} = J' + 1/2$$

# Determination of the rotational temperature of the upper state (d, v'):

• Then, we have following equation to determine the rotational temperature of the upper state (d, v'):  $N_{dv'}(2J'+1)g_{as}^{J'}\exp\left[-\frac{F_d(J',v')}{\nu T^{dv'}}\right]$ 

$$N_{\mathrm{d}v'J'} = \frac{\left[ \frac{\kappa T_{\mathrm{rot}}}{\sum_{J'}} \right]}{\left[ \frac{(2J'+1)g_{as}^{J'} \exp\left[ -\frac{F_{\mathrm{d}}(J',v')}{kT_{\mathrm{rot}}^{\mathrm{d}v'}} \right] \right]}$$

$$E\left(I'_{\mathrm{d}v'}\right) \in \operatorname{Energy}\left[ \exp\left[ -\frac{G_{\mathrm{d}v'}}{kT_{\mathrm{rot}}^{\mathrm{d}v'}} \right] \right]$$

 $-F_{d}(J', v')$ : Energy level of state (d, v', J')

## **Statistical Weight**

- For H<sub>2</sub>,

   For J = 2, 4, ..., of d <sup>3</sup>Π<sub>u</sub><sup>-</sup> (= para), g<sup>H</sup><sub>a</sub> = 1
   For J = 1, 3, ..., of d <sup>3</sup>Π<sub>u</sub><sup>-</sup> (= ortho), g<sup>H</sup><sub>s</sub> = 3
- For D<sub>2</sub>,

   For J = 2, 4, ..., of d <sup>3</sup>Π<sub>u</sub><sup>-</sup> (= ortho), g<sup>D</sup><sub>s</sub> = 6
   For J = 1, 3, ..., of d <sup>3</sup>Π<sub>u</sub><sup>-</sup> (= para), g<sup>D</sup><sub>a</sub> = 3

6.1 Boltzmann plots and rot-vibrational distributions of d state (A)  $H_2$  plasma



•  $T_{vib} \simeq 0.39 - 0.41 \text{ eV over } 0 \le v' \le 3$ , almost independent of z.

6.1 Boltzmann plots and vibrational distributions of d state (Contd.)

Levels v' = 0 - 3 Characterized by  $T_{vib}$ .

Level v' = 4

n(v' = 4) is found to be much less populated than the extrapolated value from 0  $\leq v' \leq 3$ , due to predissociation level to H(1s) + H(2s) states between v' = 3 and 4 of d state.



1.E+06

n<sub>vib</sub> (cm<sup>-3</sup>)

1.E+02

1.E+00

0

• 6 cm

10 cm

▲14 cm

2

vibrational level v

3

Δ

6.1 Boltzmann plots and rot-vibrational distributions of d state (B)  $D_2$  plasma



- $T_{\rm vib} \simeq 0.39 0.41$  eV, almost the same value with that of H<sub>2</sub>.
- n(v' = 4) is also described with the same T<sub>vib</sub> with 0 ≤ v' ≤ 3, due to predissociation level at v' ≥ 4.





# Both for $H_2$ and $D_2$

- *T*<sub>rot</sub> becomes higher as flowing to the downstream, because of energy relaxation from electron and vibration to rotation.
  - Energy deposition process
    - Microwave → electron translation → (collisional excitation) → H<sub>2</sub> vibrations → (Relaxations) → H<sub>2</sub> rotations and translations
- The higher vibrational states have lower T<sub>rot</sub>.
  - Angular momentum of  $H_2$  molecule should be conserved in  $H_2(X) + e^- \rightarrow H_2(d : v', J') + e^-$ .
  - The higher the v' level, the larger the moment of inertia.

• 
$$I_X \omega_X = I_{dv1} \omega_{dv1} = I_{dv2} \omega_{dv2}$$

• If  $I_{dv2} > I_{dv1}$ , then  $\frac{1}{2}I_{dv2}\omega_{dv2}^2 < \frac{1}{2}I_{dv1}\omega_{dv1}^2$  Hence,  $T_{rot}v^2 < T_{rot}v^1$ 

## Difference between H<sub>2</sub> and D<sub>2</sub>

- The vibrational quanta are larger for lighter isotopic molecules.
- The difference in  $T_{rot}$  will be more emphasized for H<sub>2</sub> than for D<sub>2</sub>.
- The difference in the thermal conductivity should be also considered.

6.3 Comparison of  $T_{rot}$  of  $H_2/HD/D_2$  in  $H_2-D_2$  plasma



Levels with v' = 2 cannot be analyzed due to spectral overlapping.

6.3 Comparison of  $T_{rot}$  of  $H_2/HD/D_2$  in  $H_2-D_2$  plasma (Contd.)



- Generally, heavier isotopic molecules have higher T<sub>rot</sub>, although the difference is not so remarkable and with exceptions
- The higher concentration of D<sub>2</sub> makes T<sub>rot</sub> higher, except for pure D<sub>2</sub> discharge.
- The heavier, the smaller thermal conductivity.
- The smaller the vibrational quanta, the more frequent the collisional relaxation becomes.
- It is unclear why pure  $D_2$  discharge has lower  $T_{rot}$  than the that with  $H_2:D_2 = 1:3$ mixture

## For H<sub>2</sub> – He mixture plasma

- This time, microwave power is much larger than H<sub>2</sub>-D<sub>2</sub> experiments, so the direct comparison is not appropriate.
  - But, in general, it is found that He admixture makes  $T_{\rm rot}$  higher.



Rotational Temperature H2-He mix Plasma

## 7. Summary

- •We examined Fulcher- $\alpha$  band of microwave discharge  $H_2/D_2$  plasma by OES measurement.
  - $T_{\rm rot}$  increased as the plasma flowed to the downstream direction.
  - $T_{rot}$  monotonically became lower for higher v' levels, while  $T_{vib}$  was almost constant ~ 0.4 eV.
- $T_{rot}^{dv'}(H_2) > T_{rot}^{dv'}(D_2)$  for v' = 0, 1, while  $T_{rot}^{dv'}(H_2) < T_{rot}^{dv'}(D_2)$  for v' = 2 4.
- The higher concentration of D<sub>2</sub> resulted in increase in T<sub>rot</sub>, except for pure D<sub>2</sub> discharge.
- He admixture made  $T_{rot}$  higher.