

EUV spectra of lanthanide ions observed with an EBIT 電子ビームイオントラップによるランタノイドイオンのEUVスペクトル測定

Safdar ALI, 加藤弘行, 中村信行 電通大レーザー

2017/12/21 合同研究会@核融合科学研究所 (also presented at EUVL source workshop 2017)

Contents

- Introduction
- Experiment

 electron beam ion trap (EBIT)

 Results

 atomic number dependence
 comparison with model spectra
 - -comparison with LPP spectra
- Summary

Our work on Sn spectra

14th International Conference on the Physics of Highly Charged Ions (HCI 2008)IOP PublishingJournal of Physics: Conference Series 163 (2009) 012071doi:10.1088/1742-6596/163/1/012071

Complementary spectroscopy of tin ions using ion and electron beams

H Ohashi¹, S Suda¹, H Tanuma¹, S Fujioka², H Nishimura², K Nishihara², T Kai³, A Sasaki³, H A Sakaue⁴, N Nakamura⁵ and S Ohtani⁵

Our work on Sn spectra

IOP PUBLISHING

Phys. Scr. T144 (2011) 014031 (3pp)

doi:10.1088/0031-8949/2011/T144/014031

22.09

21

Wavelength (nm)

22

23

20

510 eV

24

25

(b) Sn

18

19

PHYSICA SCRIPTA

EUV spectroscopy of highly charged ions with high- and low-energy EBITs

J H	Junji Yatsurugi ¹ , Etsushi Watanabe ¹ , Hayato Ohashi ¹ , Hiroyuki A Sakaue ² and Nobuyuki Nakamura ¹				19.78	↓ 18+ (Ge–like)
				nit)	20.21 21.	⁶⁸ 540 eV 19+ (Ga–like)
Ion	Transition	Present	[14, 15]	arb. u		٨
Sn ¹⁸⁺	$4 s^{2} 4 p_{1/2} 4 p_{3/2} [2] - 4 s^{4} p_{1/2} (1) 4 p_{3/2}^{2} [1]$ $4 s^{2} 4 p_{1/2}^{2} [0] - 4 s^{4} p_{1/2}^{2} 4 p_{3/2} [1]$	19.78 22.09		ensity (J20.47	560 eV 20+ (Zn–like)
Sn ¹⁹⁺	$4s^{2}4p_{1/2}[1/2]-[4s4p_{1/2}(1)]4p_{3/2}[1/2]4s^{2}4p_{1/2}[1/2]-[4s4p_{1/2}(1)]4p_{3/2}[3/2]$	20.21 21.68		Inte	Magan	an f ^a raharahan kanadar kana sa
${{Sn}^{20+}}{{Sn}^{21+}}$	$\frac{4s^{2} {}^{1}S_{0} - 4s4p^{1}P_{1}}{4s^{2}S_{1/2} - 4p^{2}P_{3/2}}$	20.47 21.87	20.4798(10) 21.8978(10)		21.	⁸⁷ 650 eV ↓ 21+ (Cu–like)
		_				

Introduction

Electron beam ion trap (EBIT)

A Penning-like ion trap + a high energy, high density e-beam.

Axial trap: well-like potential Radial trap: Axial B-field produced by SCM e-beam space charge

Highly charged ions are produced through successive ionization by the e-beam.

Electron energy limits the highest charge.

Emission from the trapped ions can be observed through the observation slits opened at the middle of the ion trap.

Compact EBIT (CoBIT) Nakamura et al., Rev. Sci. Instrum. 79 (2008) 063104

Specificationse-beam energy0.1 - 2 keVe-beam current20 mA (max)Magnetic field0.2 T (max)Temperature77 K (High-Tc SCM)

Experimental setup

with a HITACHI grating (001-0660, 1200 gr/mm)

Electron energy dependence - Typical spectra for Au -

I.P. $18 \rightarrow 19 \rightarrow$ 484 eV $17 \rightarrow 18 +$ 457 eV $16 \rightarrow 17 \rightarrow$ 389 eV

15+ → 16+ 364 eV

CoBIT spectroscopy

- Simple spectra
 - -with a narrow charge distribution
 - dominated by transitions to the ground state
- Charge state that should be assigned for each emission line can be determined from electron energy dependence
- Good benchmark for models

EUV spectra of gadolinium (Z=64)

EUV spectra of holmium (Z=67)

Summary and outlook

- CoBIT is a powerful device for studying spectra of highly charged ions relevant to EUVL.
- EUV spectra of Gd to Ho have been observed for studying the emission features near 6.x nm.
- Concentration of emission from adjacent charges has been confirmed for Gd at x~8.
- CR model calculations are in progress for detailed understanding of the spectra.
- Observations for Mo are also in progress for the data relevant to BEUVL and water window.

EUV spectra of Mo

Emma Sokell (UCD)

E. Sokell et al., ICPEAC 2017 (July, Cairns) J. Phys.: Conf. Ser. 875 (2017) 052045

Thank you