2017年12月20日(水)-22(金) 「原子分子過程研究と受動・能動分光計測の高度化のシナジー効果によるプラズマ科学の展開」,「原子分子データ応用フォーラムセミナー」 合同研究会、核融合科学研究所

特別セッション半導体製造、プラズマプロセスと原子分子過程、分光研究とのかかわり

スオーム法による 電子衝突断面積セットの高精度推定

佐藤孝紀,川口悟(室蘭工業大学)

Kohki Satoh and Satoru Kawaguchi, Muroran Institute of Technology

ksatoh@mmm.muroran-it.ac.jp

Outline

- 1. はじめに:放電基礎過程と放電プラズマ 応用技術
- 2. スオーム法による電子衝突断面積の推定法と高精度化の5要素
- 3. 高精度な電子衝突断面積の推定例
 - ✓ TEOS vapour
 - ✓ H₂O vapour
 - $\checkmark N_2$
- 4. おわりに

電子衝突断面積・電子輸送係数と放電プラズマ応用

電子衝突断面積推定の5要素

電離後の残存エネルギー配分比率

電子衝突断面積の高精度推定例1:TEOS vapour

- ① 電子輸送係数測定値の充実:輸送係数の種類と換算電界範囲の拡大
- ② 断面積データの充実:理論解析,実測値(全衝突断面積,微分断面積,部分断面積,エネルギー損失スペクトルなど)
- ③ 電子輸送係数の定義の明確化と適切な比較:測定方法の吟味と電子輸送係数の定義との対応の明確化, 測定方法に即した電子輸送係数の算出・サンプリング(電子輸送解析)と実測値との比較
- ④ 計算手法の高精度化:Boltzmann方程式解析の高精度化(多項近似解析, Propagator法^[1]による直接解析),Monte Carlo simulationの利用
- ⑤ 電子挙動の正確な記述: 微分断面積に基づく散乱方向の決定, 第二種(超弾性)衝突の考慮, 電離衝突 後のエネルギー分配分布の適用など

PECVDによる薄膜堆積とシミュレーション

D PECVD + TEOS vapour ・・・SiO₂膜の堆積

 ✓ SiH₄ガスを用いたPECVDによって成膜されたSiO₂膜よりも良 好なステップカバレッジが得られる

- ✓ TEOS分子由来の膜中不純物(C, H)がデバイスの信頼性に影響
- ✓ PECVDによって成膜された膜の膜質(Si-DLC膜の硬度, SiO₂膜 中の不純物量, etc.)は放電プラズマの状態に影響される
 - 放電プラズマ中で生成される粒子種と成膜過程の関係 に関する検討がコンピュータシミュレーションを用い て行われている

SiH₄およびTEOS vapour を用いたPECVDの堆積形状

[応用物理ハンドブック 第2版 p. 711 (2012)]

P. J. Stout and M. J. Kushner [J. Vac. Sci. Technol. A **11**, 2562 (1993)]

- TEOS/O₂混合プラズマによるSiO₂膜の成膜シミュレーションを行い, 成膜レート, 膜中の炭素含有量, ステップカバレッジを計算
- ・
 か電プラズマ中で生成される解離種としてSi(OH)₄およびSi(OC₂H₅)(OH)₃のみを考慮

TEOS の解離性電離衝突の部分断面積の報告

- □ J. Holtgrave et al. [Chem. Phys. Lett. 215, 6 (1993)]
- ✓ 電子ビーム法 + フーリエ変換型質量分析装置により, TEOS分子の電離断 面積を測定
- ✓ TEOS分子と電子の電離衝突によって20種類の正イオンが生成されることを報告

$$\begin{split} &\text{SiO}_{3}\text{C}_{5}\text{H}_{13}{}^{+}, \ \text{SiO}_{4}\text{C}_{7}\text{H}_{17}{}^{+}, \ \text{SiO}_{4}\text{C}_{6}\text{H}_{15}{}^{+}, \ \text{SiO}_{3}\text{H}_{3}{}^{+}, \ \text{SiO}_{3}\text{C}_{6}\text{H}_{15}{}^{+}, \ \text{SiO}_{2}\text{C}_{4}\text{H}_{11}{}^{+}, \ \text{OCH}_{3}{}^{+} \\ &\text{SiO}_{3}\text{C}_{4}\text{H}_{11}{}^{+}, \ \text{SiO}_{2}\text{H}_{3}{}^{+}, \ \text{SiO}_{3}\text{C}_{2}\text{H}_{7}{}^{+}, \ \text{SiO}_{4}\text{C}_{4}\text{H}_{11}{}^{+}, \ \text{SiO}_{4}\text{C}_{8}\text{H}_{20}{}^{+}, \ \text{SiO}_{2}\text{C}_{2}\text{H}_{7}{}^{+}, \ \text{OC}_{2}\text{H}_{5}{}^{+} \\ &\text{SiO}_{4}\text{C}_{5}\text{H}_{13}{}^{+}, \ \text{SiO}_{3}\text{C}_{3}\text{H}_{9}{}^{+}, \ \text{SiO}_{4}\text{C}_{8}\text{H}_{19}{}^{+}, \ \text{SiO}_{4}\text{C}_{3}\text{H}_{9}{}^{+}, \ \text{SiO}_{2}\text{C}_{3}\text{H}_{9}{}^{+}, \ \text{SiOH}{}^{+} \end{split}$$

解離種の情報を含む TEOS vapoursの電子衝突断面積セット ⇒ 詳細さの向上

従来の電子衝突断面積セットと部分断面積測定値

本研究で提案するTEOS vapourの電子衝突断面積セット

- *q*_m *q*_{vib} *q*_{ex} *q*_i・・・推定値
- ε ≤ 50 eV: Holtgrave et al. (1993)が測定した20種類の部分電離断面積の実測値 (×0.8)
- *ɛ* > 50 eV: 推定值

TEOS vapour中の電子輸送係数

TEOS/O2混合ガス中の電子輸送解析による 推定断面積の妥当性検証

O2ガスの電子衝突断面積セット

TEOS/O2混合ガス中の電離係数

電子衝突断面積の高精度推定例2: H_2O vapour

S. Kawaguchi, et al., Jpn. J. Appl. Phys., Vol. 55, 07LD03 (2016)

- ① 電子輸送係数測定値の充実:輸送係数の種類と換算電界範囲の拡大
- ② 断面積データの充実:理論解析,実測値(全衝突断面積,微分断面積,部分断面積,エネルギー損失スペクトルなど)
- ③ 電子輸送係数の定義の明確化と適切な比較:測定方法の吟味と電子輸送係数の定義との対応の明確化, 測定方法に即した電子輸送係数の算出・サンプリング(電子輸送解析)と実測値との比較
- ④ 計算手法の高精度化:Boltzmann方程式解析の高精度化(多項近似解析, Propagator法^[1]による直接解析),Monte Carlo simulationの利用
- ⑤ 電子挙動の正確な記述:微分断面積に基づく散乱方向の決定,第二種(超弾性)衝突の考慮,電離衝突 後のエネルギー分配分布の適用など

水上・水中プラズマの応用:ライフサイエンス、農業

Discharge plasma in gases containing water vapour has attracted much attention for the applications in life science.

Stimulation of plants germination and growth.

[J. Takahata *et al.* Jpn. J. Appl. Phys. **54**, 01AG07 (2015)] Inactivation of *E. coli* using atmospheric-pressure plasma jet

[Kuwahata et al. Jpn. J. Appl. Phys. 54, 01AG08 (2015)]

(a) untreated control

(b) after Ar plasma jet irradiation for 5s

- ✓ In these applications, RNS/ROS in water play important roles, so that proper control of the concentration for these species in water is needed.
- ✓ Thus, discharge plasma is often generated in/above water or in water vapour/mist.
- \checkmark H₂O is a key molecule for life science applications; therefore, it is focused in this work.
- ✓ Previous electron collision cross section sets of H_2O vapour are examined, and a reliable set is estimated.

従来の H_2O vapour の電子衝突断面積

- Momentum transfer $q_{\rm m}$
- Rotational excitation $q_{\rm rot}$
- Vibrational excitation q_{vib}
- Electron attachment q_a
- Electronic excitation q_{ex}
- **Ionisation** q_i

従来の H₂O vapour 断面積から計算される輸送係数

- ✓ Significant difference is shown in drift velocity & diffusion coefficient.
- ✓ Modification is needed.

H₂O vapour の電子衝突断面積

19

断面積推定に使用するデータ

1. Measured cross sections

• Ionisation q_i (H₂O⁺, OH⁺, H⁺, O⁺, H₂⁺, O₂⁺)

Lindsay & Mangan, Photon and Electron Interactions with Atoms, Molecules and Ions, Vol.I/17C (2003)

- Electronic excitation q_{ex} (25 kinds) Thorn *et al.*, PMC Phys. B 2, 1 (2009), J. Chem. Phys. 126, 064306 (2007)
- Vibrational excitation q_{vib} (2 kinds) Seng and Linder, J. Phys. B 9, 2539 (1976)
- Electron attachment q_a (H⁻, O⁻, OH⁻) H⁻ & O⁻: Rawat *et al.*, J. Phys. B **40**, 4625 (2007) OH⁻:Melton, J. Chem. Phys. **57**, 4218 (1972)
- Differential cross section (scattering angle distribution) Cho *et al.*, J. Phys. B **37**, 625 (2004).

2. Theoretically deduced cross sections

 Rotational excitation q_{rot} (3 kinds) Itikawa and Mason, J. Chem. Ref. Data 34, 1 (2005)

Present cross-section set of H₂O with reaction table

Label	Type of collision	Reaction	$\varepsilon_{\rm th}~({\rm eV})$
mom ^{a)}	Momentum transfer ^{a)}	$H_2O + e \rightarrow H_2O + e$	
rot1	Rotational excitation	$H_2O (J = 0) + e \rightarrow H_2O (J = 1) + e$	4.604×10^{-3}
rot2	Rotational excitation	$H_2O (J=0) + e \rightarrow H_2O (J=2) + e$	8.690×10^{-3}
rot3	Rotational excitation	$H_2O (J = 0) + e \rightarrow H_2O (J = 3) + e$	1.764×10^{-2}
vib1	Vibrational excitation	$H_2O(000) + e \rightarrow H_2O(010) + e$	0.198
vib2	Vibrational excitation	$H_2O(000) + e \rightarrow H_2O[(100) + (001)] + e$	0.466
a1	Electron attachment	$H_2O + e \rightarrow H^- + OH$	4.000
a2	Electron attachment	$H_2O + e \rightarrow OH^- + H$	4.016
a3	Electron attachment	$H_2O + e \rightarrow O^- + H_2$	4.300
ex 1	Electronic excitation	$\mathrm{H}_{2}\mathrm{O} + \mathrm{e} \to \mathrm{H}_{2}\mathrm{O}(\tilde{a}^{3}B_{1}) + \mathrm{e}$	7.140
ex2	Electronic excitation	$H_2O + e \rightarrow H_2O(\tilde{A}^1B_1) + e$	7.490
ex3	Electronic excitation	$\mathrm{H}_{2}\mathrm{O} + \mathrm{e} \rightarrow \mathrm{H}_{2}\mathrm{O}(^{3}A_{2}) + \mathrm{e}$	8.900
ex4	Electronic excitation	$\mathrm{H}_{2}\mathrm{O} + \mathrm{e} \rightarrow \mathrm{H}_{2}\mathrm{O}(^{1}A_{2}) + \mathrm{e}$	9.200
ex5	Electronic excitation	$\mathrm{H}_{2}\mathrm{O} + \mathrm{e} \rightarrow \mathrm{H}_{2}\mathrm{O}(\tilde{b}^{3}A_{1}) + \mathrm{e}$	9.460
ex6	Electronic excitation	$\mathrm{H}_2\mathrm{O} + \mathrm{e} \to \mathrm{H}_2\mathrm{O}(\tilde{B}^1A_1) + \mathrm{e}$	9.730
ex7	Electronic excitation	$H_2O + e \rightarrow H_2O(\tilde{d}^3A_1) + e$	9.820
ex8	Electronic excitation	$\mathrm{H}_{2}\mathrm{O} + \mathrm{e} \rightarrow \mathrm{H}_{2}\mathrm{O}(\tilde{c}^{3}B_{1} + \tilde{C}^{1}B_{1}) + \mathrm{e}$	9.980
ex9	Electronic excitation	$H_2O + e \rightarrow H_2O(\tilde{D}^1A_1) + e$	10.12
ex10	Electronic excitation	$H_2O + e \rightarrow H_2O[\tilde{C}^1B_1(100) + {}^3B_1] + e$	10.35
ex11	Electronic excitation	$H_2O + e \rightarrow H_2O[^{1}B_1 + \tilde{D}^{1}A_1(100)] + e$	10.55
ex12	Electronic excitation	$\mathrm{H}_{2}\mathrm{O} + \mathrm{e} \rightarrow \mathrm{H}_{2}\mathrm{O}(^{3}A_{2}) + \mathrm{e}$	10.70
ex13	Electronic excitation	$H_2O + e \rightarrow H_2O[\tilde{D}^1A_1(110) + \tilde{C}^1B_1(200)] + e$	10.77
ex14	Electronic excitation	$\mathrm{H}_{2}\mathrm{O} + \mathrm{e} \to \mathrm{H}_{2}\mathrm{O}(^{1}A_{2}) + \mathrm{e}$	10.84
ex15	Electronic excitation	$H_2O + e \rightarrow H_2O[\tilde{e}^3B_1 + \tilde{E}^1B_1 + \tilde{D}^1A_1(200)] + e$	10.97
ex16	Electronic excitation	$H_2O + e \rightarrow H_2O(^{3}B_2 + {}^{1}B_2 + {}^{3}B_2) + e$	11.10
ex 17	Electronic excitation	$H_2O + e \rightarrow H_2O(^{3}A_1 + {}^{1}A_2 + {}^{1}A_1 + {}^{3}A_2 + {}^{1}B_1 + {}^{3}B_1) + e$	11.23
ex 18	Electronic excitation	$H_2O + e \rightarrow H_2O(^{1}B_1 + {}^{3}B_1 + {}^{3}A_1 + {}^{1}A_1) + e$	11.35
ex 19	Electronic excitation	$H_2O + e \rightarrow H_2O(^{1}B_2 + {}^{3}B_2 + {}^{3}B_1 + {}^{1}B_1) + e$	11.50
ex20	Electronic excitation	$\mathrm{H}_{2}\mathrm{O} + \mathrm{e} \rightarrow \mathrm{H}_{2}\mathrm{O}(^{3}A_{2} + {}^{1}A_{2}) + \mathrm{e}$	11.61
ex21	Electronic excitation	$\mathrm{H}_{2}\mathrm{O} + \mathrm{e} \rightarrow \mathrm{H}_{2}\mathrm{O}(^{3}B_{1}) + \mathrm{e}$	11.68
ex22	Electronic excitation	$\mathrm{H}_{2}\mathrm{O} + \mathrm{e} \rightarrow \mathrm{H}_{2}\mathrm{O}(^{1}B_{1}) + \mathrm{e}$	11.75
ex23	Electronic excitation	$\mathrm{H}_{2}\mathrm{O} + \mathrm{e} \rightarrow \mathrm{H}_{2}\mathrm{O}(^{3}A_{1} + {}^{1}A_{1}) + \mathrm{e}$	11.80
ex24	Electronic excitation	$H_2O + e \rightarrow H_2O({}^{1}A_1 + {}^{3}B_1 + {}^{1}B_1) + e$	11.90
ex25	Electronic excitation	$\mathrm{H}_{2}\mathrm{O} + \mathrm{e} \to \mathrm{H}_{2}\mathrm{O}(^{1}A_{1}) + \mathrm{e}$	12.06
ex26	Electronic excitation	$H_2O + e \rightarrow H_2O^* + e$	12.50
i1	Ionization	$H_2O + e \rightarrow H_2O^+ + 2e$	12.65
i2	Ionization	$H_2O + e \rightarrow H^+ + OH + 2e$	16.95
i3	Ionization	$H_2O + e \rightarrow OH^+ + H + 2e$	18.08
i4	Ionization	$\mathrm{H_2O} + \mathrm{e} \rightarrow \mathrm{O^+} + \mathrm{H_2} + 2\mathrm{e}$	19.00
i5	Ionization	$\mathrm{H_2O} + \mathrm{e} \rightarrow \mathrm{H_2}^+ + \mathrm{O} + 2\mathrm{e}$	20.70
i6	Ionization	$\mathrm{H_2O} + \mathrm{e} \rightarrow \mathrm{O^{2+}} + \mathrm{H_2} + 3\mathrm{e}$	80.00

S. Kawaguchi, et al., Jpn. J. Appl. Phys., Vol. 55, 07LD03 (2016)

a) Elastic.

電離衝突断面積 q_i

 Ionisation q_i (H₂O⁺, OH⁺, H⁺, O⁺, H₂⁺, O₂⁺) Lindsay & Mangan, Photon and Electron Interactions with Atoms, Molecules and Ions, Vol.I/17C (2003)

電子励起衝突断面積 q_{ex}

電子付着•振動励起突断面積 $q_{\rm a} \& q_{\rm vib}$

- Vibrational excitation q_{vib} (2 kinds) Seng and Linder, J. Phys. B 9, 2539 (1976)
- Electron attachment q_a (H⁻, O⁻, OH⁻) H⁻ & O⁻ : Rawat *et al.*, J. Phys. B **40**, 4625 (2007) OH⁻:Melton, J. Chem. Phys. **57**, 4218 (1972)

弹性衝突断面積 $q_{elastic}$

✓ The sum of q_{elastic} and q_{rot} is measured by Cho *et al.* (J. Phys. B 37, 625 (2004)).

回転励起衝突断面積: q_{rot}

Theoretically deduced cross sections

• Rotational excitation q_{rot} (3 kinds), but multiplied by factor 0.1 Itikawa and Mason, J. Chem. Ref. Data 34, 1 (2005)

微分断面積: $q_{\rm DCS}$

- ✓ Electron is found to be scattered mainly in forward direction after elastic and rotational excitation collisions with H₂O.
- ✓ The scattering angle θ is calculated as

• **Differential cross section (scattering angle distribution)** Cho *et al.*, J. Phys. B **37**, 625 (2004).

H2Oの電子輸送係数

Good agreement in the transport coefficients is obtained between the calculated and measured values in a wide range of E/N.

Rotational excitation cross section q_{rot}

- Threshold energy is lower than thermal energy.
- Cross section is very large.

Superelastic collision may affect the transport properties of electrons in H_2O vapour.

Superelastic collision cross sectionM. Yousfi *et al.* [Phys. Rev. E 49, 3264 (1994)] *etc.*

Principle of detailed balance

$$q_{J \to 0}(\epsilon) = \frac{1}{2J+1} \frac{\epsilon + \Delta \epsilon}{\epsilon} q_{0 \to J}(\epsilon + \Delta \epsilon)$$

- ε : Electron energy
- $\Delta \varepsilon \ : \text{Threshold energy of rotational} \\ \text{excitation cross section } q_{0 \rightarrow J}$
- J : Rotational angular momentum

Superelastic collision has a very little influence on $W_{\rm m}$ and $ND_{\rm L}$ about E/N = 50 Td and 50 - 100 Td, respectively.

電子衝突断面積の高精度推定例3:N₂

- ① 電子輸送係数測定値の充実:輸送係数の種類と換算電界範囲の拡大
- ② 断面積データの充実:理論解析,実測値(全衝突断面積,微分断面積,部分断面積,エネルギー損失スペクトルなど)
- ③ 電子輸送係数の定義の明確化と適切な比較:測定方法の吟味と電子輸送係数の定義との対応の明確化, 測定方法に即した電子輸送係数の算出・サンプリング(電子輸送解析)と実測値との比較
- ④ 計算手法の高精度化:Boltzmann方程式解析の高精度化(多項近似解析, Propagator法^[1]による直接解析),Monte Carlo simulationの利用
- ⑤ 電子挙動の正確な記述:微分断面積に基づく散乱方向の決定,第二種(超弾性)衝突の考慮,電離衝突 後のエネルギー分配分布の適用など

従来のN2ガスの電子衝突断面積セット

性の考慮が必要であることを報告

N₂ガス中の電子輸送係数: W & ND_L

電子ドリフト速度W

縦方向拡散係数ND_L

N2ガス中の電離係数

スオーム法による電子衝突断面積セットの高精度推定に係わる5要素 ①電子輸送係数測定値の充実 ③電子輸送係数の定義の明確化と適切な比較 ④電子挙動の正確な記述

2017年12月20日(水)-22(金) 「原子分子過程研究と受動・能動分光計測の高度化のシナジー効果によるプラズマ科学の展開」,「原子分子データ応用フォーラムセミナー」 合同研究会、核融合科学研究所

ご清聴ありがとうございます

特別セッション 半導体製造、プラズマプロセスと原子分子過程、分光研究とのかかわり スオーム法による 電子衝突断面積セットの高精度推定

佐藤孝紀,川口悟(室蘭工業大学) Kohki Satoh and Satoru Kawaguchi, Muroran Institute of Technology ksatoh@mmm.muroran-it.ac.jp

