NIFS, 22 December, 2017

準安定励起イオンの衝突過程

$1s2s + e^- \rightarrow 1s2snl \rightarrow 1s^22s + hv$

田沼肇,沼舘直樹,首都大・理工・物理 Hajime Tanuma and Naoki Numadate Department of Physics Tokyo Metropolitan University **Charge eXchange Spectroscopy (CXS)**

 $P^{q+} + T \rightarrow P^{(q-t)+*} + T^{t+}$

↓ photon : energy, intensity
P(q-t)+

P: projectile, T: target

Experimental method for measurements of

- 1. Charge transfer cross sections
- 2. Transition wavelengths

Multiply Charged Ion Beam Lines in TMU

Setup for X-ray / EUV measurements

Spectra with a Silicon Drift Detector (SDD)

Un-expected Soft X-ray emissions in collisions of O⁶⁺ ions with He

 $O^{5+} (1s^2 nl)$: < 138 eV = max. energy from O^{5+}

Energy Level Data in NIST ASD

- O^{5+} 1s²2s ²S_{1/2} : IP = 138.12 eV
 - $1s2s(^{3}S)2p {}^{4}P_{J}$: 554.24 eV
 - $1s2s(^{3}S)2p ^{2}P_{J} : 562.59 eV$
 - 1s2s3s ⁴S_{3/2} : 636.03 eV

 $hv \sim 560 \text{ eV}$: O⁵⁺ 1s²2s - 1s2s2p $hv \sim 630 \text{ eV}$: O⁵⁺ 1s²2s - 1s2s3p (?)

Why 1s2snl states are produced?

Meta-stable states in a primary ion beam He-like ions : few % of 1s2s ³S₁ from ECRIS

$$\begin{split} \mathbf{O^{6+}(1s2s\ ^3S_1) + He} &\to \mathbf{O^{5+}(1s2s\mathit{nl}) + He^+} \\ &\to \mathbf{O^{6+}(1s^2) + e^-} \quad : \textbf{Auger} \\ & (auto-ionization) \\ \mathbf{O^{6+}(1s2s\ ^3S_1) + He} &\to \mathbf{O^{5+}(1s2s\mathit{nl}) + He^+} \\ &\to \mathbf{O^{5+}(1s^22s) + hv} \end{split}$$

Auger process is dominant for light atoms.

Theoretical Auger and X-ray emission rates

TABLE II. Theoretical Auger and x-ray emission rates (in a.u.^a) for states of the 1s 2s 2p configuration of Li-like ions of atomic number Z.

z		6 C	7 N		8 O		9		10	
State	Auger	х гау	Auger	х гау	Auger	x ray	Auger	x ray	Auger	x ray
${}^{2}P_{1/2}^{(+)}$	1.48(-3)	2.21(-6)	1.65(-3)	4.57(-6)	1.78(-3)	8.46(-6)	1.89(-3)	1.45(-5)	1.98(-3)	2.36(-5)
${}^{2}P_{1/2}^{(-)}$	2.01(-4)	1.72(-5)	2.05(-4)	3.58(-5)	2.06(-4)	6.64(-5)	2.09(-4)	1.13(-4)	2.15(-4)	1.80(-4)
${}^{2}P_{3/2}^{(+)}$	1.48(-3)	2.16(-6)	1.66(-3)	4.38(-6)	1.79(-3)	7.87(-6)	1.89(-3)	1.30(-5)	1.99(-3)	1.99(-5)
${}^{2}P_{3/2}^{(-)}$	1.92(-4)	1.73(-5)	1.90(-4)	3.60(-5)	1.82(-4)	6.70(-5)	1.74(-4)	1.15(-4)	1.66(-4)	1.84(-4)
⁴ <i>P</i> _{1/2}	6.50(-9)	4.19(-11)	1.26(-8)	2.25(-10)	2.13(-8)	9.34(-10)	3.29(-8)	3.24(-9)	4.78(-8)	9.84(-9)
⁴ P _{3/2}	1.73(-9)	1.04(-10)	2.60(-9)	5.57(-10)	3.17(-9)	2.33(-9)	3.07(-9)	8.17(-9)	2.15(-9)	2.48(-8)
⁴ P _{5/2}	2.06(-10)	3.97(-13)	4.45(-10)	1.69(-12)	8.49(-10)	5.73(-12)	1.48(-9)	1.66(-11)	2.43(-9)	4.21(-11)

^a1 a.u. = 27.21 eV/ \hbar = 4.134 × 10¹⁶ sec⁻¹. Numbers in parentheses stand for powers of 10, e.g., 1.48(-3) = 1.48 × 10⁻³.

Auger > X-ray

M. H. Chen et al., Phys. Rev. A 27 (1993) 544.

Department of Physics, Tokyo Metropolitan University

Previous experiments in Grenoble, France Observation of X-ray transitions $N^{5+}(1s2s \ ^{3}S) + He / H_{2}$ at 48 keV (3.4 keV/u)

M. G. Suraud *et al.*, J. Phys. B **21** (1988) 1219.

$C^{4+}(1s2s^{3}S) + H_{2} \text{ at } 40 \text{ keV} (3.3 \text{ keV/u})$

L. Guillemot et al., J. Phys. B 23 (1990) 3353.

$O^{6+}(1s2s \ ^{3}S) + He \text{ at } 60 \text{ keV} (3.8 \text{ keV/u})$

S. Bliman et al., J. Phys. B 25 (1992) 2065.

Previous experiments in Grenoble, France

 $C^{4+}(1s2s^{3}S) + H_{2} \text{ at } 40 \text{ keV} (3.3 \text{ keV/u})$

only one transition : $1s^22s^2S - 1s2s(^3S_1)^{3}p^{2,4}P^{\circ}$

No X-ray emission in C⁴⁺(1s2s ³S) - He collisions

L. Guillemot et al., J. Phys. B 23 (1990) 3353.

Previous experiments in Grenoble, France

$N^{5+}(1s2s^{3}S) + H_{2} / He at 40 keV (3.3 keV/u)$

1s²2s ²S - 1s2s³p ^{2,4}P^o

1s²2s ²S - 1s2s²p ⁴P^o

Target dependence

M. G. Suraud *et al.*, J. Phys. B **21** (1988) 1219.

Previous experiments in Grenoble, France

O⁶⁺(1s2s ³S) + He at 60 keV (3.8 keV/u)

1s²2s ²S - 1s2s³p ^{2,4}P^o (or 1s²2p ²P - 1s2p3p ²L^o)

S. Bliman et al., J. Phys. B 25 (1992) 2065.

Spectra with a Grazing Incident Spectrometer (GIS) equipped with a grating for 5-20 nm

Classical Over the Barrier Model

Prediction of dominant capture level

Classical Over the Barrier Model

Ionization Potentials

- He: 24.588 eV
- $H_2: 15.98 eV$ Ar : 15.760 eV $N_2: 15.60 eV$
- Xe : 12.130 eV O_2 : 12.30 eV

In the emission spectra,

 H_2 , Ar, and N_2 might be similar. Xe and O_2 might be similar.

X-ray spectra with a GIS (1)

Discussion (1)

E1 transitions : red : 100% blue : dominant

 $C^{4+} + He : n = 2$ is dominant. Weak 1s-3p transition $C^{4+} + Ar : n = 3$ is dominant. Strong 1s-3p transition $C^{4+} + Xe : n = 3$ is dominant. Weak 1s-3p transition ? 3s, 3d >> 3p

X-ray spectra with a GIS (2)

Department of Physics, Tokyo Metropolitan University

Discussion (2)

 \rightarrow 4f might be dominant (?).

X-ray spectra with a GIS (3)

Department of Physics, Tokyo Metropolitan University

Discussion (3)

1s-3p transition in only He ?4f might be dominant.

Summary and Outlook

- 1. Soft X-ray emissions from inner-shell excited Li-like ions were observed for the second time even though auto-ionization is main process.
- 2. Target dependences have been observed, and some of them could be explained with some assumption. But, we still have several questions.
- 3. Contribution of quartet states with long lifetimes must be revealed.
- 4. Another grating for 1-5 nm
- 5. Theoretical calculations for state-selective capture cross sections and transition rates between excited states are necessary to understanding the capture and cascades processes.