厳しい条件下における各種材料の損耗計測と その構造破壊予防法への応用

糟谷紘一^{1,2} 徳永和俊⁴ 川路均⁵ J. Straus⁶ K. Kolacek⁶ J. Schmidt⁶ O. Flolov⁶ M. Vilemova⁶ J, Matejicek⁶ A. Jager⁷ L. Juha^{6,7} M. Toufarova⁷ A. Choukourov^{7,8} 井澤靖和² 藤田雅之² 砂原 淳² 本越伸二² 島田義則² 谷口誠治²

応用ながれ研¹ 九大応力研⁴ 東工大・フロンティア材研⁵ チェコ科学アカデミー・プラズマ物理研⁶ 同・物理研⁷ チャールズ大⁸ レーザー総研² 阪大レーザー研³

https://sites.google.com/site/kasuyakouichihomupeji/

表題研究につき、最近の結果と、現在の準備状況について、概略を述べる。主な項目を箇条書きにすると、

- 1. これまでの各種高熱負荷源による損耗関連研究概要
- 2. 損耗モニターへの応用:壁部破壊防止用複合材料の検討
- 3. インコヒーレントアップコンバージョン材料の調査と応用のための準備
- 4. 極短波長ナノ秒EUVレーザー光による材料損耗研究の詳細
- 5. 今後の展望 である。

各種材料の高エネルギービーム入射時の表面損耗のデータベースを整理した。ビーム種はパルスのイオンビーム、電子ビーム、レーザビームであった。損耗閾値や、損耗状態を調べた結果、タングステンとSiCの2層を組み合わせると、厳しい条件下で使用できる環境モニター、すなわち、各種構造物の破壊・破損モニターが設計できることがわかった。したがって、今後は得られる経費が問題で、これさえ用意できれば、必要な要素部品を調達し、実地試験をすることができる。

文献調査により、波長変換効率の高い3種のインコヒーレントアップコンバージョン材料を見つけた。開発担当者にサンプル提供を依頼したが、3件とも、現在までの所提供許可は得られていないので、最終例について素材を購入し、試しに自作する用意をした。

チェコ科学アカデミーとの共同研究のもとに、先方の極短波長紫外レーザーを使用 して、核融合炉壁候補材料の表面変化を詳細に調べた[1]。

第1著者は、ボランティアとして、レーザー総研の年次報告会に出席するのが通例で、年に1-2回、同研の所員の話を聞くが、その時の質問やコメントの中から、共同研究のテーマにしたい項目が出てくる。そこで、余裕があれば、これらを含めた将来展望もする予定である。

[1] J. Straus, K. Kolacek, K. Kasuya et al (2018), Response of fusion plasma-facing materials to nanosecond pulses of extreme ultraviolet radiation. Laser and Particle Beams 1-15, https://doi.org/10.1017/S0263034618000332 Cambridge Univ. Press.